Electrochemical label-free pathogen identification for bloodstream infections diagnosis: Towards a machine learning based smart blood culture bottle

被引:2
作者
Babin, Thibaut C. [1 ]
Dedole, Tommy [1 ]
Bouvet, Pierre [1 ]
Marcoux, Pierre R. [1 ]
Gougis, Maxime [1 ]
Mailley, Pascal [1 ]
机构
[1] Univ Grenoble Alpes, CEA, LETI, Minatec Campus,17 Ave Martyrs, F-38000 Grenoble, France
关键词
Blood culture; Electrochemical fingerprint; Machine learning; Multi -material electrode array; BACTEC NR-660; ANTIMICROBIAL THERAPY; SYSTEM;
D O I
10.1016/j.snb.2023.133748
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Bloodstream infections are a growing public health concern. Current pathogen identification systems are based on complex and expensive devices, intended for use in centralized laboratories. Subsequent identification re-quires harmful chemical reagents, specialized personnel and time. Here we describe a new approach for rapid and decentralized diagnosis of positive blood cultures using electrochemical sensors. By implementing a multi -material potentiometric platform in a blood culture bottle, we have developed a portable system for pathogen identification of Gram and of genus. Bacterial growth in human blood generates a specific label-free multiplex electrochemical fingerprint according to the detected species. Analysis of these fingerprints using homemade machine learning algorithms allow for rapid identification of the pathogen after detection (14 species and 9 genus) (GRAM= 99 % accuracy 5.75 h after detection, GENUS= 85 % accuracy 7.8 h after positivity) without further handling of the contaminated sample.
引用
收藏
页数:10
相关论文
共 36 条
  • [1] Detection of volatile metabolites produced by bacterial growth in blood culture media by selected ion flow tube mass spectrometry (SIFT-MS)
    Allardyce, RA
    Langford, VS
    Hill, AL
    Murdoch, DR
    [J]. JOURNAL OF MICROBIOLOGICAL METHODS, 2006, 65 (02) : 361 - 365
  • [2] [Anonymous], 2020, Sepsis
  • [3] Nanostructures for Biosensing, with a Brief Overview on Cancer Detection, IoT, and the Role of Machine Learning in Smart Biosensors
    Banerjee, Aishwaryadev
    Maity, Swagata
    Mastrangelo, Carlos H.
    [J]. SENSORS, 2021, 21 (04) : 1 - 34
  • [4] Rapid Identification of Bacteria with a Disposable Colorimetric Sensing Array
    Carey, James R.
    Suslick, Kenneth S.
    Hulkower, Keren I.
    Imlay, James A.
    Imlay, Karin R. C.
    Ingison, Crystal K.
    Ponder, Jennifer B.
    Sen, Avijit
    Wittrig, Aaron E.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (19) : 7571 - 7576
  • [5] Development of a multiparametric (bio)sensing platform for continuous monitoring of stress metabolites
    Chmayssem, Ayman
    Verplanck, Nicolas
    Tanase, Constantin Edi
    Costa, Guillaume
    Monsalve-Grijalba, Karen
    Amigues, Simon
    Alias, Melanie
    Gougis, Maxime
    Mourier, Veronique
    Vignoud, Severine
    Ghaemmaghami, Amir M.
    Mailley, Pascal
    [J]. TALANTA, 2021, 229
  • [6] ROUTINE EVALUATION OF THE NONRADIOMETRIC BACTEC NR-660 SYSTEM
    COURCOL, RJ
    FRUCHART, A
    ROUSSELDELVALLEZ, M
    MARTIN, GR
    [J]. JOURNAL OF CLINICAL MICROBIOLOGY, 1986, 24 (01) : 26 - 29
  • [7] Discriminating Bacteria with Optical Sensors Based on Functionalized Nanoporous Xerogels
    Crunaire, Sabine
    Marcoux, Pierre R.
    Khanh-Quyen Ngo
    Moy, Jean-Pierre
    Mallard, Frederic
    Thu-Hoa Tran-Thi
    [J]. CHEMOSENSORS, 2014, 2 (02): : 171 - 181
  • [8] Advancing Biosensors with Machine Learning
    Cui, Feiyun
    Yue, Yun
    Zhang, Yi
    Zhang, Ziming
    Zhou, H. Susan
    [J]. ACS SENSORS, 2020, 5 (11) : 3346 - 3364
  • [9] Heterogeneity of blood processing and storage additives in different centers impacts stored red blood cell metabolism as much as storage time: lessons from REDS-III-Omics
    D'Alessandro, Angelo
    Culp-Hill, Rachel
    Reisz, Julie A.
    Anderson, Mikayla
    Fu, Xiaoyun
    Nemkov, Travis
    Gehrke, Sarah
    Zheng, Connie
    Kanias, Tamir
    Guo, Yuelong
    Page, Grier
    Gladwin, Mark T.
    Kleinman, Steve
    Lanteri, Marion
    Stone, Mars
    Busch, Michael
    Zimring, James C.
    Mast, A. E.
    Gottschall, J. L.
    Bialkowski, W.
    Anderson, L.
    Miller, J.
    Hall, A.
    Udee, Z.
    Johnson, V.
    Triulzi, D. J.
    Kiss, J. E.
    D'Andrea, P. A.
    Murphy, E. L.
    Guiltinan, A. M.
    Cable, R. G.
    Spencer, B. R.
    Johnson, S. T.
    Brambilla, D. J.
    Sullivan, M. T.
    Endres, S. M.
    Page, G. P.
    Guo, Y.
    Haywood, N.
    Ringer, D.
    Siege, B. C.
    Busch, M. P.
    Lanteri, M. C.
    Stone, M.
    Keating, S.
    Kanias, T.
    Gladwin, M.
    Kleinman, S. H.
    Glynn, S. A.
    Malkin, K. B.
    [J]. TRANSFUSION, 2019, 59 (01) : 89 - 100
  • [10] Dalessandro A., 2016, BLOOD, V128, P43