Out-of-Distribution Detection with Reconstruction Error and Typicality-based Penalty

被引:2
|
作者
Osada, Genki [1 ,2 ]
Takahashi, Tsubasa [1 ]
Ahsan, Budrul [3 ]
Nishide, Takashi [2 ]
机构
[1] LINE Corp, Tokyo, Japan
[2] Univ Tsukuba, Tsukuba, Ibaraki, Japan
[3] IBM Japan Ltd, Tokyo, Japan
关键词
D O I
10.1109/WACV56688.2023.00551
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The task of out-of-distribution (OOD) detection is vital to realize safe and reliable operation for real-world applications. After the failure of likelihood-based detection in high dimensions had been shown, approaches based on the typical set have been attracting attention; however, they still have not achieved satisfactory performance. Beginning by presenting the failure case of the typicality-based approach, we propose a new reconstruction error-based approach that employs normalizing flow (NF). We further introduce a typicality-based penalty, and by incorporating it into the reconstruction error in NF, we propose a new OOD detection method, penalized reconstruction error (PRE). Because the PRE detects test inputs that lie off the in-distribution manifold, it effectively detects adversarial examples as well as OOD examples. We show the effectiveness of our method through the evaluation using natural image datasets, CIFAR-10, TinyImageNet, and ILSVRC2012.
引用
收藏
页码:5540 / 5552
页数:13
相关论文
共 50 条
  • [41] Learning to Augment Distributions for Out-of-Distribution Detection
    Wang, Qizhou
    Fang, Zhen
    Zhang, Yonggang
    Liu, Feng
    Li, Yixuan
    Han, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [42] Face Reconstruction Transfer Attack as Out-of-Distribution Generalization
    June, Yoon Gyo
    Park, Jaewoo
    Dong, Xingbo
    Park, Hojin
    Teoh, Andrew Beng Jin
    Camps, Octavia
    COMPUTER VISION - ECCV 2024, PT LXXV, 2025, 15133 : 396 - 413
  • [43] Latent Transformer Models for out-of-distribution detection
    Graham, Mark S.
    Tudosiu, Petru-Daniel
    Wright, Paul
    Pinaya, Walter Hugo Lopez
    Teikari, Petteri
    Patel, Ashay
    U-King-Im, Jean-Marie
    Mah, Yee H.
    Teo, James T.
    Jager, Hans Rolf
    Werring, David
    Rees, Geraint
    Nachev, Parashkev
    Ourselin, Sebastien
    Cardoso, M. Jorge
    MEDICAL IMAGE ANALYSIS, 2023, 90
  • [44] CONTINUAL LEARNING FOR OUT-OF-DISTRIBUTION PEDESTRIAN DETECTION
    Molahasani, Mahdiyar
    Etemad, Ali
    Greenspan, Michael
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2685 - 2689
  • [45] Boosting Out-of-distribution Detection with Typical Features
    Zhu, Yao
    Chen, Yuefeng
    Xie, Chuanlong
    Li, Xiaodan
    Zhang, Rong
    Xue, Hui
    Tian, Xiang
    Zheng, Bolun
    Chen, Yaowu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [46] Out-of-distribution detection by regaining lost clues
    Zhao, Zhilin
    Cao, Longbing
    Yu, Philip S.
    ARTIFICIAL INTELLIGENCE, 2025, 339
  • [47] Full-Spectrum Out-of-Distribution Detection
    Jingkang Yang
    Kaiyang Zhou
    Ziwei Liu
    International Journal of Computer Vision, 2023, 131 : 2607 - 2622
  • [48] Leveraging Visual Attention for out-of-distribution Detection
    Cultrera, Luca
    Seidenari, Lorenzo
    Del Bimbo, Alberto
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 4449 - 4458
  • [49] A Simple Framework for Robust Out-of-Distribution Detection
    Hur, Youngbum
    Yang, Eunho
    Hwang, Sung Ju
    IEEE ACCESS, 2022, 10 : 23086 - 23097
  • [50] A Critical Analysis of Document Out-of-Distribution Detection
    Gu, Jiuxiang
    Ming, Yifei
    Zhou, Yi
    Kuen, Jason
    Morariu, Vlad I.
    Zhao, Handong
    Zhang, Ruiyi
    Barmpalios, Nikolaos
    Liu, Anqi
    Li, Yixuan
    Sun, Tong
    Nenkova, Ani
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS - EMNLP 2023, 2023, : 4973 - 4999