On a subfamily of starlike functions related to hyperbolic cosine function

被引:8
作者
Mundalia, Mridula [1 ]
Kumar, S. Sivaprasad [1 ]
机构
[1] Delhi Technol Univ, Dept Appl Math, Delhi 110042, India
关键词
Univalent functions; Starlike functions; Radius problems; Hyperbolic Cosine function; Subordination;
D O I
10.1007/s41478-023-00550-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce and study a new Ma-Minda subclass of starlike functions S-?(& lowast;), defined as S-?( )& lowast;:= { f is an element of A :(f (z))/ (zf ' (z) )? cosh root z =: ? (z), z is an element of D }, associated with an analytic univalent function cosh root z, where we choose the branch of the square root function so that cosh root z = 1 + z /2! + z(2 )/ 4! + ? We establish certain inclusion relations for S-?(& lowast;) and deduce sharp S-?(& lowast;)-radii for certain subclasses of analytic functions.
引用
收藏
页码:2043 / 2062
页数:20
相关论文
共 28 条
[1]   Neighborhoods of starlike and convex functions associated with parabola [J].
Ali, Rosihan M. ;
Subramanian, K. G. ;
Ravichandran, V. ;
Ahuja, Om P. .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2008, 2008 (1)
[2]   Starlikness Associated with Cosine Hyperbolic Function [J].
Alotaibi, Abdullah ;
Arif, Muhammad ;
Alghamdi, Mohammed A. ;
Hussain, Shehzad .
MATHEMATICS, 2020, 8 (07)
[3]  
[Anonymous], 1997, Complex Variables Theory Appl.
[4]   On a subclass of strongly starlike functions [J].
Aouf, Mohamed Kamal ;
Dziok, Jacek ;
Sokol, Janusz .
APPLIED MATHEMATICS LETTERS, 2011, 24 (01) :27-32
[5]   Starlike Functions Associated with Cosine Functions [J].
Bano, Khadija ;
Raza, Mohsan .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (05) :1513-1532
[6]  
Baricz A., 2013, J ANALYTICAL, V21, P1
[7]   Radius Problems for Starlike Functions Associated with the Sine Function [J].
Cho, N. E. ;
Kumar, V. ;
Kumar, S. S. ;
Ravichandran, V. .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2019, 45 (01) :213-232
[8]  
Janowski W., 1973, Annales Polonici Mathematici, V28, P297
[9]   Relations of a planar domains bounded by hyperbolas with families of holomorphic functions [J].
Kanas, S. ;
Masih, V. S. ;
Ebadian, A. .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
[10]  
Kanas S., 2000, Rev. Roum. Math. Pures Appl., V45, P647