Gene expression model inference from snapshot RNA data using Bayesian non-parametrics

被引:10
作者
Kilic, Zeliha [1 ]
Schweiger, Max [2 ,3 ]
Moyer, Camille [2 ,4 ]
Shepherd, Douglas [2 ,3 ]
Presse, Steve [2 ,3 ,5 ]
机构
[1] St Jude Childrens Res Hosp, Dept Struct Biol, Memphis, TN USA
[2] ASU, Ctr Biol Phys, Tempe, AZ 85281 USA
[3] ASU, Dept Phys, Tempe, AZ 85281 USA
[4] ASU, Sch Math & Stat Sci, Tempe, AZ USA
[5] ASU, Sch Mol Sci, Tempe, AZ 85281 USA
来源
NATURE COMPUTATIONAL SCIENCE | 2023年 / 3卷 / 02期
关键词
VARIANCE FUNCTION ESTIMATION; NONPARAMETRIC REGRESSION; CONFORMATIONAL MEMORY; TRANSLATION DYNAMICS; NUCLEAR TRANSPORT; TIME-SERIES; CELL; KINETICS; TRANSCRIPTION; SELECTION;
D O I
10.1038/s43588-022-00392-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A method that infers gene networks and rate parameters directly from single-molecule fluorescence in situ hybridization RNA snapshot data is proposed and demonstrated on synthetic and real data, providing insights on data from S. cerevisiae and E. coli. Gene expression models, which are key towards understanding cellular regulatory response, underlie observations of single-cell transcriptional dynamics. Although RNA expression data encode information on gene expression models, existing computational frameworks do not perform simultaneous Bayesian inference of gene expression models and parameters from such data. Rather, gene expression models-composed of gene states, their connectivities and associated parameters-are currently deduced by pre-specifying gene state numbers and connectivity before learning associated rate parameters. Here we propose a method to learn full distributions over gene states, state connectivities and associated rate parameters, simultaneously and self-consistently from single-molecule RNA counts. We propagate noise from fluctuating RNA counts over models by treating models themselves as random variables. We achieve this within a Bayesian non-parametric paradigm. We demonstrate our method on the Escherichia colilacZ pathway and the Saccharomyces cerevisiaeSTL1 pathway, and verify its robustness on synthetic data.
引用
收藏
页码:174 / +
页数:12
相关论文
共 116 条
  • [1] [Anonymous], 2022, ZENODO, DOI [10.5281/zenodo.7425217, DOI 10.5281/ZENODO.7425217]
  • [2] Balleza E, 2018, NAT METHODS, V15, P47, DOI [10.1038/NMETH.4509, 10.1038/nmeth.4509]
  • [3] Berger M., 2021, PREPRINT
  • [4] Localization of ASH1 mRNA particles in living yeast
    Bertrand, E
    Chartrand, P
    Schaefer, M
    Shenoy, SM
    Singer, RH
    Long, RM
    [J]. MOLECULAR CELL, 1998, 2 (04) : 437 - 445
  • [5] Nucleosome retention and the stochastic nature of promoter chromatin remodeling for transcription
    Boeger, Hinrich
    Griesenbeck, Joachim
    Kornberg, Roger D.
    [J]. CELL, 2008, 133 (04) : 716 - 726
  • [6] Single-molecule tracking technologies for quantifying the dynamics of gene regulation in cells, tissue and embryos
    Boka, Alan P.
    Mukherjee, Apratim
    Mir, Mustafa
    [J]. DEVELOPMENT, 2021, 148 (18):
  • [7] Distinguishing between models of mammalian gene expression: telegraph-like models versus mechanistic models
    Braichenko, Svitlana
    Holehouse, James
    Grima, Ramon
    [J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2021, 18 (183)
  • [8] Variance estimation in nonparametric regression via the difference sequence method
    Brown, Lawrence D.
    Levine, M.
    [J]. ANNALS OF STATISTICS, 2007, 35 (05) : 2219 - 2232
  • [9] Diffraction-limited molecular cluster quantification with Bayesian nonparametrics
    Bryan, J. Shepard
    Sgouralis, Ioannis
    Presse, Steve
    [J]. NATURE COMPUTATIONAL SCIENCE, 2022, 2 (02): : 102 - 111
  • [10] Variance function estimation in multivariate nonparametric regression with fixed design
    Cai, T. Tony
    Levine, Michael
    Wang, Lie
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (01) : 126 - 136