Pareto-optimal reinsurance for both the insurer and the reinsurer under the risk-adjusted value and general premium principles

被引:0
作者
Bao, Qian [1 ]
Peng, Jiangyan [1 ,2 ]
Zou, Lei [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Risk-adjusted value; capital at risk; cost of capital; conditional value at risk; value at risk; Pareto-optimal reinsurance; ARRANGEMENTS;
D O I
10.1080/03610926.2022.2158344
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we design the Pareto-optimal reinsurance contract for both the insurer and the reinsurer by minimizing the convex combination of the risk-adjusted value of the insurer's liability and the reinsurer's liability, where capital at risk is calculated by the value at risk (VaR) or conditional value at risk (CVaR). In order to prevent the moral hazard, we assume that both ceded and retained loss functions are increasing functions. We analyze the optimal solutions for a wide class of reinsurance premium principles. When the reinsurance premium principles satisfy three axioms: law invariance, risk loading and preserving convex order, we find that layer reinsurance is always optimal over the assumed risk measures. Then we impose an additional weak constraint on the premium principle to simplify the form of layer reinsurance which is optimal. Finally, we illustrate the applicability of our results by deriving the parameters of the optimal layer reinsurance explicitly under the expected value principle and Wang's premium principle.
引用
收藏
页码:3616 / 3641
页数:26
相关论文
共 22 条
  • [1] Optimal risk transfers in insurance groups
    Asimit A.V.
    Badescu A.M.
    Tsanakas A.
    [J]. European Actuarial Journal, 2013, 3 (1) : 159 - 190
  • [2] Borch K., 1969, ASTIN BULL, V5, P293, DOI DOI 10.1017/S051503610000814X
  • [3] Borch K.H., 1960, T 16 INT C ACT, VI, P597, DOI DOI 10.1017/S05150361000095572-S2.0-27244457311
  • [4] Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measures
    Cai, Jun
    Tan, Ken Seng
    [J]. ASTIN BULLETIN, 2007, 37 (01): : 93 - 112
  • [5] Pareto-optimal reinsurance arrangements under general model settings
    Cai, Jun
    Liu, Haiyan
    Wang, Ruodu
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2017, 77 : 24 - 37
  • [6] OPTIMAL REINSURANCE FROM THE PERSPECTIVES OF BOTH AN INSURER AND A REINSURER
    Cai, Jun
    Lemieux, Christiane
    Liu, Fangda
    [J]. ASTIN BULLETIN, 2016, 46 (03): : 815 - 849
  • [7] Optimal reinsurance under VaR and CTE risk measures
    Cai, Jun
    Tan, Ken Seng
    Weng, Chengguo
    Zhang, Yi
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2008, 43 (01) : 185 - 196
  • [8] THE DESIGN OF AN OPTIMAL RETROSPECTIVE RATING PLAN
    Chen, Xinxiang
    Chi, Yichun
    Tan, Ken Seng
    [J]. ASTIN BULLETIN, 2016, 46 (01): : 141 - 163
  • [9] OPTIMAL REINSURANCE REVISITED - A GEOMETRIC APPROACH
    Cheung, Ka Chun
    [J]. ASTIN BULLETIN, 2010, 40 (01): : 221 - 239
  • [10] Chi YC, 2017, N AM ACTUAR J, V21, P417, DOI 10.1080/10920277.2017.1302346