Deep-learning-based methods for super-resolution fluorescence microscopy

被引:11
作者
Liao, Jianhui [1 ]
Qu, Junle [1 ]
Hao, Yongqi [2 ]
Li, Jia [1 ]
机构
[1] Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen Key Lab Photon & Biophoton, Key Lab Optoelect Devices & Syst,Minist Educ & Gua, Shenzhen 518060, Peoples R China
[2] NARI Technol Co Ltd, NARI Grp Corp, State Grid Elect Power Res Inst, Nanjing 211106, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Super-resolution fluorescence microscopy; deep learning; convolutional neural network; generative adversarial network; image reconstruction; RESOLUTION LIMIT; LOCALIZATION; RECONSTRUCTION; MOLECULES; NETWORKS;
D O I
10.1142/S1793545822300166
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The algorithm used for reconstruction or resolution enhancement is one of the factors affecting the quality of super-resolution images obtained by fluorescence microscopy. Deep-learning-based algorithms have achieved state-of-the-art performance in super-resolution fluorescence microscopy and are becoming increasingly attractive. We firstly introduce commonly-used deep learning models, and then review the latest applications in terms of the network architectures, the training data and the loss functions. Additionally, we discuss the challenges and limits when using deep learning to analyze the fluorescence microscopic data, and suggest ways to improve the reliability and robustness of deep learning applications.
引用
收藏
页数:16
相关论文
共 61 条
  • [51] Srivastava A, 2017, ADV NEUR IN, V30
  • [52] Srivastava N, 2014, J MACH LEARN RES, V15, P1929
  • [53] van der Maaten L, 2008, J MACH LEARN RES, V9, P2579
  • [54] Vicidomini G, 2018, NAT METHODS, V15, P173, DOI [10.1038/NMETH.4593, 10.1038/nmeth.4593]
  • [55] Three-Dimensional Localization of Single Molecules for Super Resolution Imaging and Single-Particle Tracking
    von Diezmann, Alex
    Shechtman, Yoav
    Moerner, W. E.
    [J]. CHEMICAL REVIEWS, 2017, 117 (11) : 7244 - 7275
  • [56] Deep learning enables cross-modality super-resolution in fluorescence microscopy
    Wang, Hongda
    Rivenson, Yair
    Jin, Yiyin
    Wei, Zhensong
    Gao, Ronald
    Gunaydin, Harun
    Bentolila, Laurent A.
    Kural, Comert
    Ozcan, Aydogan
    [J]. NATURE METHODS, 2019, 16 (01) : 103 - +
  • [57] Wang Z, 2003, CONF REC ASILOMAR C, P1398
  • [58] Content-aware image restoration: pushing the limits of fluorescence microscopy
    Weigert, Martin
    Schmidt, Uwe
    Boothe, Tobias
    Mueller, Andreas
    Dibrov, Alexandr
    Jain, Akanksha
    Wilhelm, Benjamin
    Schmidt, Deborah
    Broaddus, Coleman
    Culley, Sian
    Rocha-Martins, Mauricio
    Segovia-Miranda, Fabian
    Norden, Caren
    Henriques, Ricardo
    Zerial, Marino
    Solimena, Michele
    Rink, Jochen
    Tomancak, Pavel
    Royer, Loic
    Jug, Florian
    Myers, Eugene W.
    [J]. NATURE METHODS, 2018, 15 (12) : 1090 - +
  • [59] Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning
    Wu, Yichen
    Rivenson, Yair
    Wang, Hongda
    Luo, Yilin
    Ben-David, Eyal
    Bentolila, Laurent A.
    Pritz, Christian
    Ozcan, Aydogan
    [J]. NATURE METHODS, 2019, 16 (12) : 1323 - +
  • [60] Image reconstruction with a deep convolutional neural network in high-density super-resolution microscopy
    Yao, Bowen
    Li, Wen
    Pan, Wenhui
    Yang, Zhigang
    Chen, Danni
    Li, Jia
    Qu, Junle
    [J]. OPTICS EXPRESS, 2020, 28 (10): : 15432 - 15446