GROUP SPARSE BAYESIAN LEARNING FOR DATA-DRIVEN DISCOVERY OF EXPLICIT MODEL FORMS WITH MULTIPLE PARAMETRIC DATASETS

被引:1
|
作者
Sun, Luning [1 ]
Du, Pan [1 ]
Sun, Hao [2 ]
Wang, Jian-Xun [1 ]
机构
[1] Univ Notre Dame, Dept Aerosp & Mech Engn, Notre Dame, IN 46556 USA
[2] Renmin Univ China, Gaoling Sch Artificial Intelligence, Beijing, Peoples R China
来源
NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION | 2024年 / 14卷 / 01期
关键词
Equation discovery; Bayesian; dynamical systems; machine learning; sparse regression; IDENTIFICATION; RECONSTRUCTION; NETWORKS; DYNAMICS;
D O I
10.3934/naco.2022040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Extracting the explicit governing equations of a dynamic system from limited data has attracted increasing attention in the data-driven modeling community. Compared to black-box learning approaches, the sparse regression-based learning method enables discovering an analytical model form from data, which is more appealing due to its white-box nature. However, distilling explicit equations from real-world measurements with data uncertainty is challenging, where many existing methods are less robust. Moreover, it is unclear how to efficiently learn a parametric system from multiple data sets with different parameters. This paper presents a group sparse Bayesian learning approaches to uncover the explicit model forms of a parametric dynamical system with estimated uncertainties. A deep neural network is constructed to improve the calculation of derivatives from noisy measurements. Group sparsity is leveraged to enable synchronous learning from a group of parametric datasets governed by the equations with the same functional form but different parameter settings. The proposed approach has been studied over a few linear/nonlinear ODE systems in explicit and implicit settings. In particular, a simplified parametric model of intracranial dynamics was identified from multiple synthetic datasets with different patient-specific parameters. The numerical results demonstrated the effectiveness of the proposed approach and the merit of synchronous learning from multiple datasets in a group sparsifying Bayesian setting.
引用
收藏
页码:190 / 213
页数:24
相关论文
共 50 条
  • [31] Novel Big Data-Driven Machine Learning Models for Drug Discovery Application
    Sripriya Akondi, Vishnu
    Menon, Vineetha
    Baudry, Jerome
    Whittle, Jana
    MOLECULES, 2022, 27 (03):
  • [32] Linking Machine Learning with Multiscale Numerics: Data-Driven Discovery of Homogenized Equations
    Arbabi, Hassan
    Bunder, Judith E.
    Samaey, Giovanni
    Roberts, Anthony J.
    Kevrekidis, Ioannis G.
    JOM, 2020, 72 (12) : 4444 - 4457
  • [33] Data-driven robust optimization in the face of large-scale datasets: An incremental learning approach
    Asgari, Somayeh Danesh
    Mohammadi, Emran
    Makui, Ahmad
    Jafari, Mostafa
    JOURNAL OF COMPUTATIONAL SCIENCE, 2024, 83
  • [34] Machine learning & deep learning in data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry
    Kumar, Sethu Arun
    Ananda Kumar, Thirumoorthy Durai
    Beeraka, Narasimha M.
    Pujar, Gurubasavaraj Veeranna
    Singh, Manisha
    Narayana Akshatha, Handattu Sankara
    Bhagyalalitha, Meduri
    FUTURE MEDICINAL CHEMISTRY, 2022, 14 (04) : 245 - 270
  • [35] Data-driven multitask sparse dictionary learning for noise attenuation of 3D seismic data
    Siahsar, Mohammad Amir Nazari
    Gholtashi, Saman
    Kahoo, Amin Roshandel
    Chen, Wei
    Chen, Yangkang
    GEOPHYSICS, 2017, 82 (06) : V385 - V396
  • [36] Citrus huanglongbing detection: A hyperspectral data-driven model integrating feature band selection with machine learning algorithms
    Yan, Kangting
    Song, Xiaobing
    Yang, Jing
    Xiao, Junqi
    Xu, Xidan
    Guo, Jun
    Zhu, Hongyun
    Lan, Yubin
    Zhang, Yali
    CROP PROTECTION, 2025, 188
  • [37] Automated Framework for Developing Predictive Machine Learning Models for Data-Driven Drug Discovery
    Neves, Bruno J.
    Moreira-Filho, Jose T.
    Silva, Arthur C.
    Borba, Joyce V. V. B.
    Mottin, Melina
    Alves, Vinicius M.
    Braga, Rodolpho C.
    Muratov, Eugene N.
    Andrade, Carolina H.
    JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, 2021, 32 (01) : 110 - 122
  • [38] Artificial Intelligence in Drug Discovery: A Comprehensive Review of Data-driven and Machine Learning Approaches
    Hyunho Kim
    Eunyoung Kim
    Ingoo Lee
    Bongsung Bae
    Minsu Park
    Hojung Nam
    Biotechnology and Bioprocess Engineering, 2020, 25 : 895 - 930
  • [39] Artificial Intelligence in Drug Discovery: A Comprehensive Review of Data-driven and Machine Learning Approaches
    Kim, Hyunho
    Kim, Eunyoung
    Lee, Ingoo
    Bae, Bongsung
    Park, Minsu
    Nam, Hojung
    BIOTECHNOLOGY AND BIOPROCESS ENGINEERING, 2020, 25 (06) : 895 - 930
  • [40] A Data-Driven Emotion Model for English Learners Based on Machine Learning
    Zheng, Zhao
    Na, Kew Si
    INTERNATIONAL JOURNAL OF EMERGING TECHNOLOGIES IN LEARNING, 2021, 16 (08) : 34 - 46