High-Dimensional Gaussian Graphical Regression Models with Covariates

被引:10
作者
Zhang, Jingfei [1 ]
Li, Yi [2 ]
机构
[1] Univ Miami, Dept Management Sci, Coral Gables, FL 33124 USA
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
关键词
Co-expression QTL; Gaussian graphical model with covariates; Nonasymptotic convergence rate; Subject-specific Gaussian graphical model; Sparse group lasso; PRECISION MATRIX ESTIMATION; VARIABLE SELECTION; TRANS-EQTLS; LASSO; GENES;
D O I
10.1080/01621459.2022.2034632
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Though Gaussian graphical models have been widely used in many scientific fields, relatively limited progress has been made to link graph structures to external covariates. We propose a Gaussian graphical regression model, which regresses both the mean and the precisionmatrix of aGaussian graphical model on covariates. In the context of co-expression quantitative trait locus (QTL) studies, our method can determine how genetic variants and clinical conditions modulate the subject-level network structures, and recover both the population-level and subject-level gene networks. Our framework encourages sparsity of covariate effects on both the mean and the precision matrix. In particular for the precision matrix, we stipulate simultaneous sparsity, that is, group sparsity and element-wise sparsity, on effective covariates and their effects on network edges, respectively. We establish variable selection consistency first under the case with known mean parameters and then a more challenging case with unknown means depending on external covariates, and establish in both cases the l(2) convergence rates and the selection consistency of the estimated precision parameters. The utility and efficacy of our proposed method is demonstrated through simulation studies and an application to a co-expression QTL study with brain cancer patients. Supplementary materials for this article are available online.
引用
收藏
页码:2088 / 2100
页数:13
相关论文
共 60 条
  • [1] Modulation of the Ras/Raf/MEK/ERK pathway by Ca2+, and calmodulin
    Agell, N
    Bachs, O
    Rocamora, N
    Villalonga, P
    [J]. CELLULAR SIGNALLING, 2002, 14 (08) : 649 - 654
  • [2] [Anonymous], 2010, P 27 INT C INT C MAC
  • [3] PI3K/mTOR inhibition of IDH1 mutant glioma leads to reduced 2HG production that is associated with increased survival
    Batsios, Georgios
    Viswanath, Pavithra
    Subramani, Elavarasan
    Najac, Chloe
    Gillespie, Anne Marie
    Delos Santos, Romelyn
    Molloy, Abigail R.
    Pieper, Russell O.
    Ronen, Sabrina M.
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [4] SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR
    Bickel, Peter J.
    Ritov, Ya'acov
    Tsybakov, Alexandre B.
    [J]. ANNALS OF STATISTICS, 2009, 37 (04) : 1705 - 1732
  • [5] Recent advances in the molecular understanding of glioblastoma
    Bleeker, Fonnet E.
    Molenaar, Remco J.
    Leenstra, Sieger
    [J]. JOURNAL OF NEURO-ONCOLOGY, 2012, 108 (01) : 11 - 27
  • [6] The Somatic Genomic Landscape of Glioblastoma
    Brennan, Cameron W.
    Verhaak, Roel G. W.
    McKenna, Aaron
    Campos, Benito
    Noushmehr, Houtan
    Salama, Sofie R.
    Zheng, Siyuan
    Chakravarty, Debyani
    Sanborn, J. Zachary
    Berman, Samuel H.
    Beroukhim, Rameen
    Bernard, Brady
    Wu, Chang-Jiun
    Genovese, Giannicola
    Shmulevich, Ilya
    Barnholtz-Sloan, Jill
    Zou, Lihua
    Vegesna, Rahulsimham
    Shukla, Sachet A.
    Ciriello, Giovanni
    Yung, W. K.
    Zhang, Wei
    Sougnez, Carrie
    Mikkelsen, Tom
    Aldape, Kenneth
    Bigner, Darell D.
    Van Meir, Erwin G.
    Prados, Michael
    Sloan, Andrew
    Black, Keith L.
    Eschbacher, Jennifer
    Finocchiaro, Gaetano
    Friedman, William
    Andrews, David W.
    Guha, Abhijit
    Iacocca, Mary
    O'Neill, Brian P.
    Foltz, Greg
    Myers, Jerome
    Weisenberger, Daniel J.
    Penny, Robert
    Kucherlapati, Raju
    Perou, Charles M.
    Hayes, D. Neil
    Gibbs, Richard
    Marra, Marco
    Mills, Gordon B.
    Lander, Eric
    Spellman, Paul
    Wilson, Richard
    [J]. CELL, 2013, 155 (02) : 462 - 477
  • [7] Large-Scale trans-eQTLs Affect Hundreds of Transcripts and Mediate Patterns of Transcriptional Co-regulation
    Brynedal, Boel
    Choi, JinMyung
    Raj, Towfique
    Bjornson, Robert
    Stranger, Barbara E.
    Neale, Benjamin M.
    Voight, Benjamin F.
    Cotsapas, Chris
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2017, 100 (04) : 581 - 591
  • [8] CAI T., 2019, ARXIV PREPRINT ARXIV
  • [9] Covariate-adjusted precision matrix estimation with an application in genetical genomics
    Cai, T. Tony
    Li, Hongzhe
    Liu, Weidong
    Xie, Jichun
    [J]. BIOMETRIKA, 2013, 100 (01) : 139 - 156
  • [10] Asymptotically Normal and Efficient Estimation of Covariate-Adjusted Gaussian Graphical Model
    Chen, Mengjie
    Ren, Zhao
    Zhao, Hongyu
    Zhou, Harrison
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (513) : 394 - 406