Synergistic Functionalization of Graphene Oxide: Electrochemical Devices and Ritter Catalysis

被引:2
作者
Ahmad, Muhammad Sohail [1 ,3 ]
Nishina, Yuta [4 ,5 ]
Inomata, Yusuke [2 ]
Haridiansyah, Andri [6 ]
Kida, Tetsuya [1 ,2 ,3 ]
机构
[1] Kumamoto Univ, Inst Ind Nanomat, 2D Nanomat Div, Kumamoto 8608555, Japan
[2] Kumamoto Univ, Fac Adv Sci & Technol, Kumamoto 8608555, Japan
[3] Kumamoto Univ, Int Res Org Adv Sci & Technol IROAST, Kumamoto 8608555, Japan
[4] Okayama Univ, Grad Sch Nat Sci & Technol, Okayama 70085300, Japan
[5] Okayama Univ, Res Core Interdisciplinary Sci, Okayama 7008530, Japan
[6] Natl Res & Innovat Agcy BRIN, Res Ctr Adv Mat, South Tangerang City 15314, Banten, Indonesia
基金
日本学术振兴会;
关键词
CHEMICAL-REDUCTION; IMPEDANCE; NANOCOMPOSITES; REACTIVITY; CHEMISTRY; OXIDATION;
D O I
10.1021/acs.jpcc.3c07871
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene oxide (GO) is a versatile platform with unique properties that find broad applications in electronics and catalysis. The double covalent functionalization of GO under mild conditions offers an efficient approach to fine-tune its properties. Herein, we present an approach involving the ring-opening reaction of epoxide groups of the GO by amines, followed by subsequent covalent linking of the sulfonated functionalized polymer. Characterization of the functionalized GO via various techniques confirms the successful surface functionalization with diverse functional groups. The mild condition employed preserves the structure and properties of GO, which demonstrates that GO can be tailored for specific applications, such as a platform for electrochemical devices and a solid acid catalyst for the Ritter reaction.
引用
收藏
页码:5860 / 5866
页数:7
相关论文
共 64 条
[51]   Strategies for the Controlled Covalent Double Functionalization of Graphene Oxide [J].
Vacchi, Isabella A. ;
Guo, Shi ;
Raya, Jesus ;
Bianco, Alberto ;
Menard-Moyon, Cecilia .
CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (29) :6591-6598
[52]   Controlled derivatization of hydroxyl groups of graphene oxide in mild conditions [J].
Vacchi, Isabella A. ;
Raya, Jesus ;
Bianco, Alberto ;
Menard-Moyon, Cecilia .
2D MATERIALS, 2018, 5 (03)
[53]   Chemical reactivity of graphene oxide towards amines elucidated by solid-state NMR [J].
Vacchi, Isabella A. ;
Spinato, Cinzia ;
Raya, Jesus ;
Bianco, Alberto ;
Menard-Moyon, Cecilia .
NANOSCALE, 2016, 8 (28) :13714-13721
[54]   Graphene Oxide as a Radical Initiator: Free Radical and Controlled Radical Polymerization of Sodium 4-Vinylbenzenesulfonate with Graphene Oxide [J].
Voylov, Dmitry ;
Saito, Tomonori ;
Lokitz, Bradley ;
Uhrig, David ;
Wang, Yangyang ;
Agapov, Alexander ;
Holt, Adam ;
Bocharova, Vera ;
Kisliuk, Alexander ;
Sokolov, Alexei P. .
ACS MACRO LETTERS, 2016, 5 (02) :199-202
[55]   Simultaneous reduction and surface functionalization of graphene oxide by cystamine dihydrochloride for rubber composites [J].
Wang, Jian ;
Fei, Guoxia ;
Pan, Yunqi ;
Zhang, Kaiye ;
Hao, Shuai ;
Zheng, Zhuo ;
Xia, Hesheng .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2019, 122 :18-26
[56]  
Wang QH, 2012, NAT CHEM, V4, P724, DOI [10.1038/NCHEM.1421, 10.1038/nchem.1421]
[57]   Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide [J].
Wang, Zhiyu ;
Dong, Yanfeng ;
Li, Hongjiang ;
Zhao, Zongbin ;
Wu, Hao Bin ;
Hao, Ce ;
Liu, Shaohong ;
Qiu, Jieshan ;
Lou, Xiong Wen .
NATURE COMMUNICATIONS, 2014, 5
[58]   Graphene-Based Electrochemical Sensors [J].
Wu, Shixin ;
He, Qiyuan ;
Tan, Chaoliang ;
Wang, Yadong ;
Zhang, Hua .
SMALL, 2013, 9 (08) :1160-1172
[59]   Current applications of graphene oxide in nanomedicine [J].
Wu, Si-Ying ;
An, Seong Soo A. ;
Hulme, John .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2015, 10 :9-24
[60]   Sulfur-Doped Graphene as an Efficient Metal-free Cathode Catalyst for Oxygen Reduction [J].
Yang, Zhi ;
Yao, Zhen ;
Li, Guifa ;
Fang, Guoyong ;
Nie, Huagui ;
Liu, Zheng ;
Zhou, Xuemei ;
Chen, Xi'an ;
Huang, Shaoming .
ACS NANO, 2012, 6 (01) :205-211