Synergistic Functionalization of Graphene Oxide: Electrochemical Devices and Ritter Catalysis

被引:2
作者
Ahmad, Muhammad Sohail [1 ,3 ]
Nishina, Yuta [4 ,5 ]
Inomata, Yusuke [2 ]
Haridiansyah, Andri [6 ]
Kida, Tetsuya [1 ,2 ,3 ]
机构
[1] Kumamoto Univ, Inst Ind Nanomat, 2D Nanomat Div, Kumamoto 8608555, Japan
[2] Kumamoto Univ, Fac Adv Sci & Technol, Kumamoto 8608555, Japan
[3] Kumamoto Univ, Int Res Org Adv Sci & Technol IROAST, Kumamoto 8608555, Japan
[4] Okayama Univ, Grad Sch Nat Sci & Technol, Okayama 70085300, Japan
[5] Okayama Univ, Res Core Interdisciplinary Sci, Okayama 7008530, Japan
[6] Natl Res & Innovat Agcy BRIN, Res Ctr Adv Mat, South Tangerang City 15314, Banten, Indonesia
基金
日本学术振兴会;
关键词
CHEMICAL-REDUCTION; IMPEDANCE; NANOCOMPOSITES; REACTIVITY; CHEMISTRY; OXIDATION;
D O I
10.1021/acs.jpcc.3c07871
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene oxide (GO) is a versatile platform with unique properties that find broad applications in electronics and catalysis. The double covalent functionalization of GO under mild conditions offers an efficient approach to fine-tune its properties. Herein, we present an approach involving the ring-opening reaction of epoxide groups of the GO by amines, followed by subsequent covalent linking of the sulfonated functionalized polymer. Characterization of the functionalized GO via various techniques confirms the successful surface functionalization with diverse functional groups. The mild condition employed preserves the structure and properties of GO, which demonstrates that GO can be tailored for specific applications, such as a platform for electrochemical devices and a solid acid catalyst for the Ritter reaction.
引用
收藏
页码:5860 / 5866
页数:7
相关论文
共 64 条
[31]   The Chemical and structural analysis of graphene oxide with different degrees of oxidation [J].
Krishnamoorthy, Karthikeyan ;
Veerapandian, Murugan ;
Yun, Kyusik ;
Kim, S. -J. .
CARBON, 2013, 53 :38-49
[32]   A review on synthesis and properties of polymer functionalized graphene [J].
Layek, Rama K. ;
Nandi, Arun K. .
POLYMER, 2013, 54 (19) :5087-5103
[33]   Highly sulfonated polymer-grafted graphene oxide composite membranes for proton exchange membrane fuel cells [J].
Lee, Hyunhee ;
Han, Jusung ;
Kim, Kihyun ;
Kim, Junghwan ;
Kim, Eunki ;
Shin, Huiseob ;
Lee, Jong-Chan .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2019, 74 :223-232
[34]   Graphene oxide: A promising nanomaterial for energy and environmental applications [J].
Li, Fen ;
Jiang, Xue ;
Zhao, Jijun ;
Zhang, Shengbai .
NANO ENERGY, 2015, 16 :488-515
[35]  
Liu RQ, 2012, J MATER CHEM, V22, P14160, DOI [10.1039/c2jm32541, 10.1039/c2jm32541a]
[36]   Thiol-ene "click" reactions and recent applications in polymer and materials synthesis: a first update [J].
Lowe, Andrew B. .
POLYMER CHEMISTRY, 2014, 5 (17) :4820-4870
[37]   Synthesis of double-clickable functionalised graphene oxide for biological applications [J].
Mei, Kuo-Ching ;
Rubio, Noelia ;
Costa, Pedro M. ;
Kafa, Houmam ;
Abbate, Vincenzo ;
Festy, Frederic ;
Bansal, Sukhvinder S. ;
Hider, Robert C. ;
Al-Jamal, Khuloud T. .
CHEMICAL COMMUNICATIONS, 2015, 51 (81) :14981-14984
[38]   Real-Time, in Situ Monitoring of the Oxidation of Graphite: Lessons Learned [J].
Morimoto, Naoki ;
Suzuki, Hideyuki ;
Takeuchi, Yasuo ;
Kawaguchi, Shogo ;
Kunisu, Masahiro ;
Bielawski, Christopher W. ;
Nishina, Yuta .
CHEMISTRY OF MATERIALS, 2017, 29 (05) :2150-2156
[39]   Polymer-Brush-Decorated Graphene Oxide: Precision Synthesis and Liquid-Crystal Formation [J].
Ohno, Kohji ;
Zhao, Chenzhou ;
Nishina, Yuta .
LANGMUIR, 2019, 35 (33) :10900-10909
[40]   Sulfonic Acid-Functionalized (Bio)Materials as Catalysts for Efficient Amide Bond Synthesis [J].
Pereira, Joana R. R. ;
Corvo, Marta C. C. ;
Peixoto, Andreia F. F. ;
Aguiar-Ricardo, Ana ;
Marques, M. Manuel B. .
CHEMCATCHEM, 2023, 15 (06)