Incorporating eco-evolutionary information into species distribution models provides comprehensive predictions of species range shifts under climate change

被引:12
作者
Lu, Wen-Xun [1 ]
Wang, Zi-Zhao [1 ]
Hu, Xue-Ying [1 ]
Rao, Guang-Yuan [1 ]
机构
[1] Peking Univ, Sch Life Sci, State Key Lab Prot & Plant Gene Res, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Climate change; Fundamental niche; Multi-temporal calibration; Eco-evolutionary information; Species distribution model; PHYLOGENETIC NICHE CONSERVATISM; ADAPTATION; PERFORMANCE; POLYPLOIDY; RESPONSES; ECOLOGY; BIOLOGY; ASIA; KEY;
D O I
10.1016/j.scitotenv.2023.169501
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
As climate changes increasingly influence species distributions, ecosystem functions, and biodiversity, the urgency to understand how species' ranges shift under those changes is great. Species distribution models (SDMs) are vital approaches that can predict species distributions under changing climates. However, SDMs based on the species' current occurrences may underestimate the species' climatic tolerances. Integrating species' realized niches at different periods, also known as multi-temporal calibration, can provide an estimation closer to its fundamental niche. Based on this, we further proposed an integrated framework that combines eco-evolutionary data and SDMs (phylogenetically-informed SDMs) to provide comprehensive predictions of species range shifts under climate change. To evaluate our approach's performance, we applied it to a group of related species, the Chrysanthemum zawadskii species complex (Anthemidae, Asteracee). First, we investigated the niche differentiation between species and intraspecific lineages of the complex and estimated their rates of niche evolution. Next, using both standard SDMs and our phylogenetically-informed SDMs, we generated predictions of suitability areas for all species and lineages and compared the results. Finally, we reconstructed the historical range dynamics for the species of this complex. Our results showed that the species and intraspecific lineages of the complex had varying degrees of niche differentiation and different rates of niche evolution. Lineage-level SDMs can provide more realistic predictions for species with intraspecific differentiation than species-level models can. The phylogenetically-informed SDMs provided more complete environmental envelopes and predicted broader potential distributions for all species than the standard SDMs did. Range dynamics varied among the species that have different rates of niche evolution. Our framework integrating eco-evolutionary data and SDMs contributes to a better understanding of the species' responses to climate change and can help to make more targeted conservation efforts for the target species under climate change, particularly for rare species.
引用
收藏
页数:14
相关论文
共 105 条
[1]   spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models [J].
Aiello-Lammens, Matthew E. ;
Boria, Robert A. ;
Radosavljevic, Aleksandar ;
Vilela, Bruno ;
Anderson, Robert P. .
ECOGRAPHY, 2015, 38 (05) :541-545
[2]   A suite of global, cross-scale topographic variables for environmental and biodiversity modeling [J].
Amatulli, Giuseppe ;
Domisch, Sami ;
Tuanmu, Mao-Ning ;
Parmentier, Benoit ;
Ranipeta, Ajay ;
Malczyk, Jeremy ;
Jetz, Walter .
SCIENTIFIC DATA, 2018, 5
[3]  
[Anonymous], 2023, R Foundation for Statistical Computing
[4]   Equilibrium of species' distributions with climate [J].
Araújo, MB ;
Pearson, RG .
ECOGRAPHY, 2005, 28 (05) :693-695
[5]   Five (or so) challenges for species distribution modelling [J].
Araujo, Miguel B. ;
Guisan, Antoine .
JOURNAL OF BIOGEOGRAPHY, 2006, 33 (10) :1677-1688
[6]   Standards for distribution models in biodiversity assessments [J].
Araujo, Miguel B. ;
Anderson, Robert P. ;
Marcia Barbosa, A. ;
Beale, Colin M. ;
Dormann, Carsten F. ;
Early, Regan ;
Garcia, Raquel A. ;
Guisan, Antoine ;
Maiorano, Luigi ;
Naimi, Babak ;
O'Hara, Robert B. ;
Zimmermann, Niklaus E. ;
Rahbek, Carsten .
SCIENCE ADVANCES, 2019, 5 (01)
[7]   Testing for phylogenetic signal in comparative data: Behavioral traits are more labile [J].
Blomberg, SP ;
Garland, T ;
Ives, AR .
EVOLUTION, 2003, 57 (04) :717-745
[8]   Plants' native distributions do not reflect climatic tolerance [J].
Bocsi, Tierney ;
Allen, Jenica M. ;
Bellemare, Jesse ;
Kartesz, John ;
Nishino, Misako ;
Bradley, Bethany A. .
DIVERSITY AND DISTRIBUTIONS, 2016, 22 (06) :615-624
[9]   Predicting current and future biological invasions: both native and invaded ranges matter [J].
Broennimann, Olivier ;
Guisan, Antoine .
BIOLOGY LETTERS, 2008, 4 (05) :585-589
[10]   Measuring ecological niche overlap from occurrence and spatial environmental data [J].
Broennimann, Olivier ;
Fitzpatrick, Matthew C. ;
Pearman, Peter B. ;
Petitpierre, Blaise ;
Pellissier, Loic ;
Yoccoz, Nigel G. ;
Thuiller, Wilfried ;
Fortin, Marie-Josee ;
Randin, Christophe ;
Zimmermann, Niklaus E. ;
Graham, Catherine H. ;
Guisan, Antoine .
GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2012, 21 (04) :481-497