A LINEAR-PROGRAMMING PORTFOLIO OPTIMIZER TO MEAN-VARIANCE OPTIMIZATION

被引:0
作者
Liu, Xiaoyue [1 ]
Huang, Zhenzhong [2 ]
Song, Biwei [3 ]
Zhang, Zhen [4 ]
机构
[1] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
[2] Univ Warwick, Dept Stat, Coventry CV4 7AL, Warwickshire, England
[3] Huawei Technol Co Ltd, Shenzhen 518100, Peoples R China
[4] Southern Univ Sci & Technol, Nat Ctr Appl Math Shenzhen, Int Ctr Mathemat, Dept Math, Shenzhen 518055, Peoples R China
关键词
Markowitz mean-variance portfolio optimization; sparsity; asymptotic consistency; DIMENSIONAL COVARIANCE; SHRINKAGE ESTIMATION; NONLINEAR SHRINKAGE; SPARSE; MATRIX; PRECISION; SELECTION; MARKOWITZ;
D O I
10.1142/S0219024923500127
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In the Markowitz mean-variance portfolio optimization problem, the estimation of the inverse covariance matrix is not trivial and can even be intractable, especially when the dimension is very high. In this paper, we propose a linear-programming portfolio optimizer (LPO) to solve the Markowitz optimization problem in both low-dimensional and high-dimensional settings. Instead of directly estimating the inverse covariance matrix sigma-1, the LPO method estimates the portfolio weights sigma-1 mu through solving an l1-constrained optimization problem. Moreover, we further prove that the LPO estimator asymptotically yields the maximum expected return while preserving the risk constraint. To offer a practical insight into the LPO approach, we provide a comprehensive implementation procedure of estimating portfolio weights via the Dantzig selector with sequential optimization (DASSO) algorithm and selecting the sparsity parameter through cross-validation. Simulations on both synthetic data and empirical data from Fama-French and the Center for Research in Security Prices (CRSP) databases validate the performance of the proposed method in comparison with other existing proposals.
引用
收藏
页数:23
相关论文
共 33 条
[1]   Design-free estimation of variance matrices [J].
Abadir, Karim M. ;
Distaso, Walter ;
Zikes, Filip .
JOURNAL OF ECONOMETRICS, 2014, 181 (02) :165-180
[2]  
[Anonymous], 2013, P 30 INT C MACHINE L
[3]   Approaching Mean-Variance Efficiency for Large Portfolios [J].
Ao, Mengmeng ;
Li, Yingying ;
Zheng, Xinghua .
REVIEW OF FINANCIAL STUDIES, 2019, 32 (07) :2890-2919
[4]   Robust estimation of high-dimensional covariance and precision matrices [J].
Avella-Medina, Marco ;
Battey, Heather S. ;
Fan, Jianqing ;
Li, Quefeng .
BIOMETRIKA, 2018, 105 (02) :271-284
[5]   Large-scale minimum variance portfolio allocation using double regularization [J].
Bian, Zhicun ;
Liao, Yin ;
O'Neill, Michael ;
Shi, Jing ;
Zhang, Xueyong .
JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2020, 116
[6]   COVARIANCE REGULARIZATION BY THRESHOLDING [J].
Bickel, Peter J. ;
Levina, Elizaveta .
ANNALS OF STATISTICS, 2008, 36 (06) :2577-2604
[7]   Sparse and stable Markowitz portfolios [J].
Brodie, Joshua ;
Daubechies, Ingrid ;
De Mol, Christine ;
Giannone, Domenico ;
Loris, Ignace .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (30) :12267-12272
[8]  
Bühlmann P, 2011, SPRINGER SER STAT, P1, DOI 10.1007/978-3-642-20192-9
[9]   ESTIMATING SPARSE PRECISION MATRIX: OPTIMAL RATES OF CONVERGENCE AND ADAPTIVE ESTIMATION [J].
Cai, T. Tony ;
Liu, Weidong ;
Zhou, Harrison H. .
ANNALS OF STATISTICS, 2016, 44 (02) :455-488
[10]   A Direct Estimation Approach to Sparse Linear Discriminant Analysis [J].
Cai, Tony ;
Liu, Weidong .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (496) :1566-1577