The dressing field method in gauge theories - geometric approach

被引:6
作者
Zajac, Marcin [1 ]
机构
[1] Univ Warsaw, Fac Phys, Dept Math Methods Phys, Ul Pasteura 5, PL-02093 Warsaw, Poland
关键词
dressing field method; gauge theories; jet bundles; principal bundles; reduction;
D O I
10.3934/jgm.2023007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, T. Masson, J. Francois, S. Lazzarini, C. Fournel and J. Attard have introduced a new method of the reduction of gauge symmetries called the dressing field method. In this paper we analyse this method from the fiber bundle point of view and we show the geometric implications for a principal bundle underlying a given gauge theory.We show how the existence of a dressing field satisfying certain conditions naturally leads to the reduction of the principal bundle and, as a consequence, to the reduction of the configuration and phase bundle of the system.
引用
收藏
页码:128 / 146
页数:19
相关论文
共 32 条
[1]  
[Anonymous], 1995, Generalized Hamiltonian Formalism for Field Theory. Constraint Systems
[2]  
[Anonymous], 1989, London Math. Soc. Lect. Note Ser.
[3]  
Attard J., 2018, THESIS U AIX MARSEIL
[4]  
Attard J. Fran, 2018, FDN MATH PHYS ONE CE, P377, DOI DOI 10.1007/978-3-319-64813-2_13
[5]   HAMILTON-JACOBI THEORY IN CAUCHY DATA SPACE [J].
Campos, Cedric M. ;
de Leon, Manuel ;
Martin de Diego, David ;
Vaquero, Miguel .
REPORTS ON MATHEMATICAL PHYSICS, 2015, 76 (03) :359-387
[6]  
Carinena J. F., 1991, Differential Geometry and its Applications, V1, P345, DOI 10.1016/0926-2245(91)90013-Y
[7]  
de Leon M., 2016, METHODS DIFFERENTIAL
[8]   Hamilton-Jacobi theory for gauge field theories [J].
de Leon, Manuel ;
Zajac, Marcin .
JOURNAL OF GEOMETRY AND PHYSICS, 2020, 152
[9]   Hamilton-Jacobi theory in multisymplectic classical field theories [J].
de Leon, Manuel ;
Daniel Prieto-Martinez, Pedro ;
Roman-Roy, Narciso ;
Vilarino, Silvia .
JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (09)
[10]  
EGUCHI T, 1980, PHYS REP, V66, P213, DOI 10.1016/0370-1573(80)90130-1