Hollow Co3S4 Nanocubes Interconnected with Carbon Nanotubes as Nanoreactors to Accelerate Polysulfide Conversion for High-Performance Lithium-Sulfur Batteries

被引:23
作者
Li, Junhao [1 ]
Li, Fangyuan [1 ]
Pan, Jiajie [1 ]
Pan, Junda [1 ]
Liao, Jinyun [1 ,3 ]
Li, Hao [3 ]
Dong, Huafeng [4 ]
Shi, Kaixiang [1 ,2 ]
Liu, Quanbing [1 ,2 ]
机构
[1] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangzhou Key Lab Clean Transportat Energy Chem, Guangdong Prov Key Lab Plant Resources Biorefinery, Guangzhou 510006, Peoples R China
[2] Jieyang Branch Chem Chem Engn, Guangdong Lab, Rongjiang Lab, Jieyang 515200, Peoples R China
[3] Huizhou Univ, Sch Chem & Mat Engn, Huizhou 516007, Peoples R China
[4] Guangdong Univ Technol, Sch Phys & Optoelect Engn, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
ENERGY-DENSITY; MEDIATOR; BINDING; REDOX;
D O I
10.1021/acs.iecr.3c00253
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Lithium-sulfur batteries (LSBs) with a high energy density of 2600 Wh kg-1 have drawn intensive attention based on the double electron reaction of sulfur. Nevertheless, blocked by the shuttle effect of lithium polysulfides and sluggish sulfur conversion kinetics, LSBs display a small specific capacity and a rapid capacity loss. Herein, we describe a conductive framework and electrocatalyst where numerous carbon nanotubes run through the hollow Co3S4 nanocubes as the sulfur host. The hollow structure can buffer the volume change during the discharge/charge process, while the CNTs link cubes together to facilitate electron transport. The Co3S4 catalyst can not only effectively accelerate the conversion from liquid LiPSs into solid Li2S1/2 but also promote the conversion of Li2S2 into Li2S. Based on the DFT theoretical calculation, the Li-S bond of Li2S2 became longer after interaction with Co3S4, indicating that it is easier to break into Li2S. Thus, the Co3S4/CNTs composite cathode shows a higher initial specific capacity (1252 mAh g-1) than the CNT cathode (928 mAh g-1) at 0.1C. In addition, it also shows a specific capacity of 440 mAh g-1 after 800 cycles with a decay rate of 0.08% per cycle at 1.0C. This work provides a new perspective for improving the sluggish transformation kinetics, which is conducive to the enhancement of sulfur utilization.
引用
收藏
页码:4364 / 4372
页数:9
相关论文
共 56 条
[31]   Emerging Catalysts to Promote Kinetics of Lithium-Sulfur Batteries [J].
Wang, Peng ;
Xi, Baojuan ;
Huang, Man ;
Chen, Weihua ;
Feng, Jinkui ;
Xiong, Shenglin .
ADVANCED ENERGY MATERIALS, 2021, 11 (07)
[32]   MOF-derived Co9S8 nano-flower cluster array modified separator towards superior lithium sulfur battery [J].
Wang, Qi ;
Zhao, Hanqing ;
Li, Boya ;
Yang, Chenhui ;
Li, Mingyang ;
Li, Yanan ;
Han, Peng ;
Wu, Miaomiao ;
Li, Tengyu ;
Liu, Ruiping .
CHINESE CHEMICAL LETTERS, 2021, 32 (03) :1157-1160
[33]   Highly Dispersed Cobalt Clusters in Nitrogen-Doped Porous Carbon Enable Multiple Effects for High-Performance Li-S Battery [J].
Wang, Rui ;
Yang, Jinlong ;
Chen, Xin ;
Zhao, Yan ;
Zhao, Wenguang ;
Qian, Guoyu ;
Li, Shunning ;
Xiao, Yinguo ;
Chen, Hao ;
Ye, Yusheng ;
Zhou, Guangmin ;
Pan, Feng .
ADVANCED ENERGY MATERIALS, 2020, 10 (09)
[34]  
Wang S., ADV ENERGY MATER
[35]   From Fundamental Understanding to Engineering Design of High-Performance Thick Electrodes for Scalable Energy-Storage Systems [J].
Wu, Jingyi ;
Zhang, Xiao ;
Ju, Zhengyu ;
Wang, Lei ;
Hui, Zeyu ;
Mayilvahanan, Karthik ;
Takeuchi, Kenneth J. ;
Marschilok, Amy C. ;
West, Alan C. ;
Takeuchi, Esther S. ;
Yu, Guihua .
ADVANCED MATERIALS, 2021, 33 (26)
[36]   Realizing fast polysulfides conversion within yolk-shelled NiO@HCSs nanoreactor as cathode host for high-performance lithium-sulfur batteries [J].
Wu, Yujie ;
Li, Dong ;
Pan, Junda ;
Sun, Yajie ;
Huang, Wenzhi ;
Wu, Ming ;
Zhang, Bingkai ;
Pan, Feng ;
Shi, Kaixiang ;
Liu, Quanbing .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (30) :16309-16318
[37]   MOF-Derived Bifunctional Co0.85Se Nanoparticles Embedded in N-Doped Carbon Nanosheet Arrays as Efficient Sulfur Hosts for Lithium-Sulfur Batteries [J].
Xie, Yonghui ;
Cao, Jiaqi ;
Wang, Xinghui ;
Li, Wangyang ;
Deng, Liying ;
Ma, Shun ;
Zhang, Hong ;
Guan, Cao ;
Huang, Wei .
NANO LETTERS, 2021, 21 (20) :8579-8586
[38]   Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities [J].
Xue, Weijiang ;
Shi, Zhe ;
Suo, Liumin ;
Wang, Chao ;
Wang, Zigiang ;
Wang, Haozhe ;
So, Kang Pyo ;
Maurano, Andrea ;
Yu, Daiwei ;
Chen, Yuming ;
Qie, Long ;
Zhu, Zhi ;
Xu, Guiyin ;
Kong, Jing ;
Li, Ju .
NATURE ENERGY, 2019, 4 (05) :374-382
[39]   NbSe2 Meets C2N: A 2D-2D Heterostructure Catalysts as Multifunctional Polysulfide Mediator in Ultra-Long-Life Lithium-Sulfur Batteries [J].
Yang, Dawei ;
Liang, Zhifu ;
Zhang, Chaoqi ;
Jacas Biendicho, Jordi ;
Botifoll, Marc ;
Chiara Spadaro, Maria ;
Chen, Qiulin ;
Li, Mengyao ;
Ramon, Alberto ;
Moghaddam, Ahmad Ostovari ;
Llorca, Jordi ;
Wang, Jiaao ;
Ramon Morante, Joan ;
Arbiol, Jordi ;
Chou, Shu-Lei ;
Cabot, Andreu .
ADVANCED ENERGY MATERIALS, 2021, 11 (36)
[40]   Promoting the Transformation of Li2S2 to Li2S: Significantly Increasing Utilization of Active Materials for High-Sulfur-Loading Li-S Batteries [J].
Yang, Xiaofei ;
Gao, Xuejie ;
Sun, Qian ;
Jand, Sara Panahian ;
Yu, Ying ;
Zhao, Yang ;
Li, Xia ;
Adair, Keegan ;
Kuo, Liang-Yin ;
Rohrer, Jochen ;
Liang, Jianneng ;
Lin, Xiaoting ;
Banis, Mohammad Norouzi ;
Hu, Yongfeng ;
Zhang, Hongzhang ;
Li, Xianfeng ;
Li, Ruying ;
Zhang, Huamin ;
Kaghazchi, Payam ;
Sham, Tsun-Kong ;
Sun, Xueliang .
ADVANCED MATERIALS, 2019, 31 (25)