Hollow Co3S4 Nanocubes Interconnected with Carbon Nanotubes as Nanoreactors to Accelerate Polysulfide Conversion for High-Performance Lithium-Sulfur Batteries

被引:23
作者
Li, Junhao [1 ]
Li, Fangyuan [1 ]
Pan, Jiajie [1 ]
Pan, Junda [1 ]
Liao, Jinyun [1 ,3 ]
Li, Hao [3 ]
Dong, Huafeng [4 ]
Shi, Kaixiang [1 ,2 ]
Liu, Quanbing [1 ,2 ]
机构
[1] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangzhou Key Lab Clean Transportat Energy Chem, Guangdong Prov Key Lab Plant Resources Biorefinery, Guangzhou 510006, Peoples R China
[2] Jieyang Branch Chem Chem Engn, Guangdong Lab, Rongjiang Lab, Jieyang 515200, Peoples R China
[3] Huizhou Univ, Sch Chem & Mat Engn, Huizhou 516007, Peoples R China
[4] Guangdong Univ Technol, Sch Phys & Optoelect Engn, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
ENERGY-DENSITY; MEDIATOR; BINDING; REDOX;
D O I
10.1021/acs.iecr.3c00253
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Lithium-sulfur batteries (LSBs) with a high energy density of 2600 Wh kg-1 have drawn intensive attention based on the double electron reaction of sulfur. Nevertheless, blocked by the shuttle effect of lithium polysulfides and sluggish sulfur conversion kinetics, LSBs display a small specific capacity and a rapid capacity loss. Herein, we describe a conductive framework and electrocatalyst where numerous carbon nanotubes run through the hollow Co3S4 nanocubes as the sulfur host. The hollow structure can buffer the volume change during the discharge/charge process, while the CNTs link cubes together to facilitate electron transport. The Co3S4 catalyst can not only effectively accelerate the conversion from liquid LiPSs into solid Li2S1/2 but also promote the conversion of Li2S2 into Li2S. Based on the DFT theoretical calculation, the Li-S bond of Li2S2 became longer after interaction with Co3S4, indicating that it is easier to break into Li2S. Thus, the Co3S4/CNTs composite cathode shows a higher initial specific capacity (1252 mAh g-1) than the CNT cathode (928 mAh g-1) at 0.1C. In addition, it also shows a specific capacity of 440 mAh g-1 after 800 cycles with a decay rate of 0.08% per cycle at 1.0C. This work provides a new perspective for improving the sluggish transformation kinetics, which is conducive to the enhancement of sulfur utilization.
引用
收藏
页码:4364 / 4372
页数:9
相关论文
共 56 条
[1]   An Analogous Periodic Law for Strong Anchoring of Polysulfides on Polar Hosts in Lithium Sulfur Batteries: S- or Li-Binding on First-Row Transition-Metal Sulfides? [J].
Chen, Xiang ;
Peng, Hong-Jie ;
Zhang, Rui ;
Hou, Ting-Zheng ;
Huang, Jia-Qi ;
Li, Bo ;
Zhang, Qang .
ACS ENERGY LETTERS, 2017, 2 (04) :795-801
[2]   Advances in Lithium-Sulfur Batteries: From Academic Research to Commercial Viability [J].
Chen, Yi ;
Wang, Tianyi ;
Tian, Huajun ;
Su, Dawei ;
Zhang, Qiang ;
Wang, Guoxiu .
ADVANCED MATERIALS, 2021, 33 (29)
[3]   Uniformly Controlled Treble Boundary Using Enriched Adsorption Sites and Accelerated Catalyst Cathode for Robust Lithium-Sulfur Batteries [J].
Chu, Rongrong ;
Thanh Tuan Nguyen ;
Bai, Yanqun ;
Kim, Nam Hoon ;
Lee, Joong Hee .
ADVANCED ENERGY MATERIALS, 2022, 12 (09)
[4]  
Fan Ke, 2022, Energy Storage Materials, V50, P696, DOI 10.1016/j.ensm.2022.06.009
[5]   Interlayer Material Selection for Lithium-Sulfur Batteries [J].
Fan, Linlin ;
Li, Matthew ;
Li, Xifei ;
Xiao, Wei ;
Chen, Zhongwei ;
Lu, Jun .
JOULE, 2019, 3 (02) :361-386
[6]   Rational Design and Engineering of One-Dimensional Hollow Nanostructures for Efficient Electrochemical Energy Storage [J].
Fang, Yongjin ;
Luan, Deyan ;
Gao, Shuyan ;
Lou, Xiong Wen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (37) :20102-20118
[7]   Catalytic effect in Li-S batteries: From band theory to practical application [J].
Han, Zhiyuan ;
Gao, Runhua ;
Jia, Yeyang ;
Zhang, Mengtian ;
Lao, Zhoujie ;
Chen, Biao ;
Zhang, Qi ;
Li, Chuang ;
Lv, Wei ;
Zhou, Guangmin .
MATERIALS TODAY, 2022, 57 :84-120
[8]   Review of Multifunctional Separators: Stabilizing the Cathode and the Anode for Alkali (Li, Na, and K) Metal-Sulfur and Selenium Batteries [J].
Hao, Hongchang ;
Hutter, Tanya ;
Boyce, Brad L. ;
Watt, John ;
Liu, Pengcheng ;
Mitlin, David .
CHEMICAL REVIEWS, 2022, 122 (09) :8053-8125
[9]   Lithium Bond Chemistry in Lithium-Sulfur Batteries [J].
Hou, Ting-Zheng ;
Xu, Wen-Tao ;
Chen, Xiang ;
Peng, Hong-Jie ;
Huang, Jia-Qi ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (28) :8178-8182
[10]   Oxygen and nitrogen tailoring carbon fiber aerogel with platinum electrocatalysis interfaced lithium/sulfur (Li/S) batteries [J].
Ji, Lei ;
Wang, Xia ;
Jia, Yongfeng ;
Qin, Xiaoxi ;
Sui, Yi ;
Yan, Huizhong ;
Niu, Zhiqiang ;
Liu, Jinghai ;
Zhang, Yuegang .
CHINESE CHEMICAL LETTERS, 2023, 34 (01)