Physical exercise for the treatment of non-ulcerated chronic venous insufficiency

被引:0
|
作者
Araujo, Diego N. [1 ]
Ribeiro, Cibele T. D. [2 ]
Maciel, Alvaro C. C. [3 ]
Bruno, Selma S. [3 ]
Fregonezi, Guilherme A. F. [3 ,4 ]
Dias, Fernando A. L. [2 ]
机构
[1] Univ Fed Alagoas, Dept Med, Arapiraca, Brazil
[2] Univ Fed Parana, Dept Physiol, Curitiba, Parana, Brazil
[3] Univ Fed Rio Grande do Norte, Dept Phys Therapy, Natal, RN, Brazil
[4] Brazilian Co Hosp Serv EBSERH, Onofre Lopes Univ Hosp, PneumoCardioVasc Lab, Natal, RN, Brazil
来源
COCHRANE DATABASE OF SYSTEMATIC REVIEWS | 2023年 / 06期
关键词
Body Weight; Evidence Gaps; Exercise; Veins; Venous Insufficiency [therapy; MUSCLE PUMP FUNCTION; QUALITY-OF-LIFE; CEAP CLASSIFICATION; VARICOSE-VEINS; DISEASE; TRIAL; HEMODYNAMICS; EPIDEMIOLOGY; ASSOCIATION; POPULATION;
D O I
10.1002/14651858.CD010637.pub3
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Chronic venous insufficiency (CVI) is a condition related to chronic venous disease that may progress to venous leg ulceration and impair quality of life of those affected. Treatments such as physical exercise may be useful to reduce CVI symptoms. This is an update of an earlier Cochrane Review. Objectives To evaluate the benefits and harms of physical exercise programmes for the treatment of individuals with non-ulcerated CVI. Search methods The Cochrane Vascular Information Specialist searched the Cochrane Vascular Specialised Register, CENTRAL, MEDLINE, Embase, and CINAHL databases and World Health Organization International Clinical Trials Registry Platform and ClinicalTrials.gov trials registers to 28 March 2022. Selection criteria We included randomised controlled trials (RCTs) comparing exercise programmes with no exercise in people with non-ulcerated CVI. Data collection and analysis We used standard Cochrane methods. Our primary outcomes were intensity of disease signs and symptoms, ejection fraction, venous refilling time, and incidence of venous leg ulcer. Our secondary outcomes were quality of life, exercise capacity, muscle strength, incidence of surgical intervention, and ankle joint mobility. We used GRADE to assess the certainty of the evidence for each outcome. Main results We included five RCTs involving 146 participants. The studies compared a physical exercise group with a control group that did not perform a structured exercise programme. The exercise protocols differed between studies. We assessed three studies to be at an overall unclear risk of bias, one study at overall high risk of bias, and one study at overall low risk of bias. We were not able to combine data in meta-analysis as studies did not report all outcomes, and different methods were used to measure and report outcomes. Two studies reported intensity of CVI disease signs and symptoms using a validated scale. There was no clear difference in signs and symptoms between groups in baseline to six months after treatment (Venous Clinical Severity Score mean difference (MD) -0.38, 95% confidence interval (CI) -3.02 to 2.26; 28 participants, 1 study; very low-certainty evidence), and we are uncertain if exercise alters the intensity of signs and symptoms eight weeks after treatment (MD -4.07, 95% CI -6.53 to -1.61; 21 participants, 1 study; very low-certainty evidence). There was no clear difference in ejection fraction between groups from baseline to six months follow-up (MD 4.88, 95% CI -1.82 to 11.58; 28 participants, 1 study; very low-certainty evidence). Three studies reported on venous refilling time. We are uncertain if there is an improvement in venous refilling time between groups for baseline to six-month changes (MD 10.70 seconds, 95% CI 8.86 to 12.54; 23 participants, 1 study; very low-certainty evidence) or baseline to eight-week change (MD 9.15 seconds, 95% CI 5.53 to 12.77 for right side; MD 7.25 seconds, 95% CI 5.23 to 9.27 for left side; 21 participants, 1 study; very low-certainty evidence). There was no clear difference in venous refilling index for baseline to six-month changes (MD 0.57 mL/min, 95% CI -0.96 to 2.10; 28 participants, 1 study; very low-certainty evidence). No included studies reported the incidence of venous leg ulcers. One study reported health-related quality of life using validated instruments (Venous Insufficiency Epidemiological and Economic Study (VEINES) and 36-item Short Form Health Survey (SF-36), physical component score (PCS) and mental component score (MCS)). We are uncertain if exercise alters baseline to six-month changes in health-related quality of life between groups (VEINES-QOL: MD 4.60, 95% CI 0.78 to 8.42; SF-36 PCS: MD 5.40, 95% CI 0.63 to 10.17; SF-36 MCS: MD 0.40, 95% CI -3.85 to 4.65; 40 participants, 1 study; all very low-certainty evidence). Another study used the Chronic Venous Disease Quality of Life Questionnaire (CIVIQ-20), and we are uncertain if exercise alters baseline to eight-week changes in health-related quality of life between groups (MD 39.36, 95% CI 30.18 to 48.54; 21 participants, 1 study; very low-certainty evidence). One study reported no differences between groups without presenting data. There was no clear difference between groups in exercise capacity measured as time on treadmill (baseline to six-month changes) (MD -0.53 minutes, 95% CI -5.25 to 4.19; 35 participants, 1 study; very low-certainty evidence). We are uncertain if exercise improves exercise capacity as assessed by the 6-minute walking test (MD 77.74 metres, 95% CI 58.93 to 96.55; 21 participants, 1 study; very low-certainty evidence). Muscle strength was measured using dynamometry or using heel lifts counts. We are uncertain if exercise increases peak torque/body weight (120 revolutions per minute) (changes from baseline to six months MD 3.10 ft-lb, 95% CI 0.98 to 5.22; 29 participants, 1 study; very low-certainty evidence). There was no clear difference between groups in baseline to eight-week change in strength measured by a hand dynamometer (MD 12.24 lb, 95% CI -7.61 to 32.09 for the right side; MD 11.25, 95% CI -14.10 to 36.60 for the left side; 21 participants, 1 study; very low-certainty evidence). We are uncertain if there is an increase in heel lifts (n) (baseline to six-month changes) between groups (MD 7.70, 95% CI 0.94 to 14.46; 39 participants, 1 study; very low-certainty evidence). There was no clear difference between groups in ankle mobility measured during dynamometry (baseline to six-month change MD -1.40 degrees, 95% CI -4.77 to 1.97; 29 participants, 1 study; very low-certainty evidence). We are uncertain if exercise increases plantar flexion measured by a goniometer (baseline to eight-week change MD 12.13 degrees, 95% CI 8.28 to 15.98 for right leg; MD 10.95 degrees, 95% CI 7.93 to 13.97 for left leg; 21 participants, 1 study; very low-certainty evidence). In all cases, we downgraded the certainty of evidence due to risk of bias and imprecision. Authors' conclusions There is currently insufficient evidence to assess the benefits and harms of physical exercise in people with chronic venous disease. Future research into the effect of physical exercise should consider types of exercise protocols (intensity, frequency, and time), sample size, blinding, and homogeneity according to the severity of disease.
引用
收藏
页数:64
相关论文
共 50 条
  • [1] Physical exercise for the treatment of non-ulcerated chronic venous insufficiency
    Araujo, Diego N.
    Ribeiro, Cibele T. D.
    Maciel, Alvaro C. C.
    Bruno, Selma S.
    Fregonezi, Guilherme A. F.
    Dias, Fernando A. L.
    COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2016, (12):
  • [2] Characteristics of ulcerated and non-ulcerated necrobiosis lipoidica
    Hines, Alexander
    Butterfield, Richard
    Boudreaux, Blake
    Bhullar, Puneet
    Severson, Kevin J.
    McBane, Robert D.
    Davis, Mark D. P.
    Pittelkow, Mark R.
    Mangold, Aaron R.
    Alavi, Afsaneh
    INTERNATIONAL JOURNAL OF DERMATOLOGY, 2023, 62 (06) : 790 - 796
  • [3] Prevention and treatment of venous ulcers in primary chronic venous insufficiency
    Neglen, Peter
    JOURNAL OF VASCULAR SURGERY, 2010, 52 : 15S - 20S
  • [4] Chronic venous diseases and chronic venous insufficiency
    Mlacak, Blaz
    Ivka, Branimir
    Ladika, Rudolf
    ZDRAVNISKI VESTNIK-SLOVENIAN MEDICAL JOURNAL, 2011, 80 (12): : 917 - 932
  • [5] Effect of obesity on chronic venous insufficiency treatment outcomes
    Deol, Zoe K.
    Lakhanpal, Sanjiv
    Franzon, Gavin
    Pappas, Peter J.
    JOURNAL OF VASCULAR SURGERY-VENOUS AND LYMPHATIC DISORDERS, 2020, 8 (04) : 617 - U371
  • [6] Chronic venous insufficiency: a comprehensive review of management
    Azar, Julian
    Rao, Amit
    Oropallo, Alisha
    JOURNAL OF WOUND CARE, 2022, 31 (06) : 510 - 519
  • [7] Balneotherapy for chronic venous insufficiency
    Silva, Melissa Andreia de Moraes
    Nakano, Luis C. U.
    Cisneros, Ligia L.
    Miranda, Fausto, Jr.
    COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2023, (01):
  • [8] Physical activity levels in patients with chronic venous insufficiency
    Domingues, Wagner Jorge Ribeiro
    Germano-Soares, Antonio Henrique
    Cucato, Gabriel Grizzo
    de Souza, Lenon Correa
    Brando, Emely Kercia Santiago de Souza
    de Souza, Emmina Lima da Cruz
    da Silva e Silva, Thiago Renan
    Areas, Guilherme Peixoto Tinoco
    Costa, Cleinaldo
    Campelo, Priscilla Ribeiro dos Santos
    dos Santos, Neivaldo Jose Nazare
    da Silva, Gustavo Oliveira
    Simoes, Caroline Ferraz
    PHLEBOLOGY, 2025, 40 (01) : 47 - 54
  • [9] Balneotherapy for chronic venous insufficiency
    de Moraes Silva, Melissa Andreia
    Nakano, Luis C. U.
    Cisneros, Ligia L.
    Miranda, Fausto, Jr.
    COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2019, (08):
  • [10] Treatment of chronic venous insufficiency in Latin America
    Javier, Julian J.
    Ortiz, Paola
    JOURNAL OF VASCULAR SURGERY-VENOUS AND LYMPHATIC DISORDERS, 2020, 8 (04) : 667 - 675