Predicting long-term outcomes of kidney transplantation in the era of artificial intelligence

被引:9
作者
Badrouchi, Samarra [1 ,2 ,3 ]
Bacha, Mohamed Mongi [1 ,2 ,3 ]
Ahmed, Abdulaziz [4 ]
Ben Abdallah, Taieb [1 ,2 ,3 ]
Abderrahim, Ezzedine [1 ,2 ]
机构
[1] Charles Nicolle Hosp, Dept Internal Med A, Tunis, Tunisia
[2] Univ Tunis Manar, Fac Med Tunis, Tunis, Tunisia
[3] Charles Nicolle Hosp, Lab Kidney Transplantat Immunol & Immunopathol LR0, Tunis, Tunisia
[4] Univ Alabama Birmingham, Sch Hlth Profess, Dept Hlth Serv Adm, Birmingham, AL USA
关键词
LASER; INTENSITY; ACCELERATION; VELOCITY; PULSES; CODE;
D O I
10.1038/s41598-023-48645-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ability to accurately predict long-term kidney transplant survival can assist nephrologists in making therapeutic decisions. However, predicting kidney transplantation (KT) outcomes is challenging due to the complexity of the factors involved. Artificial intelligence (AI) has become an increasingly important tool in the prediction of medical outcomes. Our goal was to utilize both conventional and AI-based methods to predict long-term kidney transplant survival. Our study included 407 KTs divided into two groups (group A: with a graft lifespan greater than 5 years and group B: with poor graft survival). We first performed a traditional statistical analysis and then developed predictive models using machine learning (ML) techniques. Donors in group A were significantly younger. The use of Mycophenolate Mofetil (MMF) was the only immunosuppressive drug that was significantly associated with improved graft survival. The average estimated glomerular filtration rate (eGFR) in the 3rd month post-KT was significantly higher in group A. The number of hospital readmissions during the 1st year post-KT was a predictor of graft survival. In terms of early post-transplant complications, delayed graft function (DGF), acute kidney injury (AKI), and acute rejection (AR) were significantly associated with poor graft survival. Among the 35 AI models developed, the best model had an AUC of 89.7% (Se: 91.9%; Sp: 87.5%). It was based on ten variables selected by an ML algorithm, with the most important being hypertension and a history of red-blood-cell transfusion. The use of AI provided us with a robust model enabling fast and precise prediction of 5-year graft survival using early and easily collectible variables. Our model can be used as a decision-support tool to early detect graft status.
引用
收藏
页数:11
相关论文
共 67 条
[1]   Applications of laser wakefield accelerator-based light sources [J].
Albert, Felicie ;
Thomas, Alec G. R. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2016, 58 (10)
[2]   Programmable-trajectory ultrafast flying focus pulses [J].
Ambat, M., V ;
Shaw, J. L. ;
Pigeon, J. J. ;
Miller, K. G. ;
Simpson, T. T. ;
Froula, D. H. ;
Palastro, J. P. .
OPTICS EXPRESS, 2023, 31 (19) :31354-31368
[3]   Electron energy increase in a laser wakefield accelerator using up-ramp plasma density profiles [J].
Aniculaesei, Constantin ;
Pathak, Vishwa Bandhu ;
Kim, Hyung Taek ;
Oh, Kyung Hwan ;
Yoo, Byung Ju ;
Brunetti, Enrico ;
Jang, Yong Ha ;
Hojbota, Calin Ioan ;
Shin, Jung Hun ;
Jeon, Jong Ho ;
Cho, Seongha ;
Cho, Myung Hoon ;
Sung, Jae Hee ;
Lee, Seong Ku ;
Hegelich, Bjorn Manuel ;
Nam, Chang Hee .
SCIENTIFIC REPORTS, 2019, 9 (1)
[4]   Technology development for ultraintense all-OPCPA systems [J].
Bromage, J. ;
Bahk, S. -W. ;
Begishev, I. A. ;
Dorrer, C. ;
Guardalben, M. J. ;
Hoffman, B. N. ;
Oliver, J. B. ;
Roides, R. G. ;
Schiesser, E. M. ;
Shoup, M. J., III ;
Webb, Spilatro B. ;
Weiner, D. ;
Zuegel, J. D. .
HIGH POWER LASER SCIENCE AND ENGINEERING, 2019, 7
[5]   Phase-locked laser-wakefield electron acceleration [J].
Caizergues, C. ;
Smartsev, S. ;
Malka, V. ;
Thaury, C. .
NATURE PHOTONICS, 2020, 14 (08) :475-+
[6]   Electron injection and trapping in a laser wakefield by field ionization to high-charge states of gases [J].
Chen, M ;
Sheng, ZM ;
Ma, YY ;
Zhang, J .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (05)
[7]   Self-Guided Laser Wakefield Acceleration beyond 1 GeV Using Ionization-Induced Injection [J].
Clayton, C. E. ;
Ralph, J. E. ;
Albert, F. ;
Fonseca, R. A. ;
Glenzer, S. H. ;
Joshi, C. ;
Lu, W. ;
Marsh, K. A. ;
Martins, S. F. ;
Mori, W. B. ;
Pak, A. ;
Tsung, F. S. ;
Pollock, B. B. ;
Ross, J. S. ;
Silva, L. O. ;
Froula, D. H. .
PHYSICAL REVIEW LETTERS, 2010, 105 (10)
[8]  
Couairon A, 2011, EUR PHYS J-SPEC TOP, V199, P5, DOI 10.1140/epjst/e2011-01503-3
[9]   Demonstration of a beam loaded nanocoulombclass laser wakefield accelerator [J].
Couperus, J. P. ;
Pausch, R. ;
Koehler, A. ;
Zarini, O. ;
Kraemer, J. M. ;
Garten, M. ;
Huebl, A. ;
Gebhardt, R. ;
Helbig, U. ;
Bock, S. ;
Zeil, K. ;
Debus, A. ;
Bussmann, M. ;
Schramm, U. ;
Irman, A. .
NATURE COMMUNICATIONS, 2017, 8
[10]   A multi-sheath model for highly nonlinear plasma wakefields [J].
Dalichaouch, T. N. ;
Xu, X. L. ;
Tableman, A. ;
Li, F. ;
Tsung, F. S. ;
Mori, W. B. .
PHYSICS OF PLASMAS, 2021, 28 (06)