The Effect of Boron Reinforced on the Supercapacitor Performance of RGO/ZnO:B Composite Electrodes

被引:0
作者
Tanriverdi, Ayca [1 ,2 ]
Tekerek, Saniye [1 ,2 ]
机构
[1] Sutcu Imam Univ, Grad Sch Nat & Appl Sci, Dept Mat Sci & Engn, Kahramanmaras, Turkiye
[2] Kahramanmaras Sutcu Imam Univ, Vocat Sch Hlth Serv, Dept Med Serv & Tech, Kahramanmaras, Turkiye
关键词
RGO/ZnO; B; Boron; composite material; Supercapacitor; GRAPHENE SYNTHESIS; NANOCOMPOSITE; ZNO; OXIDE; NANOSTRUCTURES; BATTERIES; CELLS; PH;
D O I
10.22068/ijmse.3306
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, zinc chloride (ZnCl2) was used as a precursor chemical to form boron-reinforced zinc oxide (ZnO: B) particles. The supercapacitor performance of the reduced graphene oxide/boron reinforced zinc oxide (RGO/ZnO: B) composite electrodes produced by hydrothermal methods and the impact of different boron doping ratios on the capacitance, were both examined. The characterization of the RGO/ZnO: B composites containing 5%, 10%, 15%, and 20% boron by weight was performed using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The capacitance measurements of the electrodes produced were conducted in a 6 M KOH aqueous solution with a typical three-electrode setup using Iviumstat potentiostat/galvanostatic cyclic voltammetry. The specific capacitance value of the 20% reinforced RGO/ZnO: B composite electrode was 155.88 F/g, while that of the RGO/ZnO composite electrode was 36.37 F/g. According to this result, the capacitance increased four-fold with a 20% boron doping concentration. Moreover, a longer cycle performance was observed for the RGO/ZnO: B electrodes with higher boron doping concentrations.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 46 条
[1]  
PBAG, 2015, Journal of Nanomedicine & Nanotechnology, V06, DOI [10.4172/2157-7439.1000253, 10.4172/2157-7439.1000253, DOI 10.4172/2157-7439.1000253]
[2]   Transformation of biomass into carbon nanofiber for supercapacitor application - A review [J].
Azwar, Elfina ;
Wan Mahari, Wan Adibah ;
Chuah, Joon Huang ;
Vo, Dai-Viet N. ;
Ma, Nyuk Ling ;
Lam, Wei Haur ;
Lam, Su Shiung .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (45) :20811-20821
[3]   Electrochemical, bonding network and electrical properties of reduced graphene oxide-Fe2O3 nanocomposite for supercapacitor electrodes applications [J].
Bhujel, Rabina ;
Rai, Sadhna ;
Deka, Utpal ;
Swain, Bibhu P. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 792 :250-259
[4]   Graphene and nanostructured MnO2 composite electrodes for supercapacitors [J].
Cheng, Qian ;
Tang, Jie ;
Ma, Jun ;
Zhang, Han ;
Shinya, Norio ;
Qin, Lu-Chang .
CARBON, 2011, 49 (09) :2917-2925
[5]   Overview of transition metal-based composite materials for supercapacitor electrodes [J].
Cui, Mingjin ;
Meng, Xiangkang .
NANOSCALE ADVANCES, 2020, 2 (12) :5516-5528
[6]   Effect of growth temperature on the optical properties of ZnO nanostructures grown by simple hydrothermal method [J].
Das, Rajasree ;
Kumar, Amit ;
Kumar, Yogendra ;
Sen, Somaditya ;
Shirage, Parasharam M. .
RSC ADVANCES, 2015, 5 (74) :60365-60372
[7]   Influence of pH on hydrothermally derived ZnO nanostructures [J].
Ghoderao, Karuna P. ;
Jamble, Shweta N. ;
Kale, Rohidas B. .
OPTIK, 2018, 156 :758-771
[8]   Nanostructured CuO/PANI composite as supercapacitor electrode material [J].
Gholivand, Mohammad Bagher ;
Heydari, Hamid ;
Abdolmaleki, Abbas ;
Hosseini, Hamid .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2015, 30 :157-161
[9]   Sol gel graphene/TiO2 nanoparticles for the photocatalytic-assisted sensing and abatement of NO2 [J].
Giampiccolo, Andrea ;
Tobaldi, David Maria ;
Leonardi, Salvatore Gianluca ;
Murdoch, Billy James ;
Seabra, Maria Paula ;
Ansell, Martin P. ;
Neri, Giovanni ;
Ball, Richard J. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 243 :183-194
[10]   Photocatalytic Hydrogen Production from Aqueous Na2S + Na2SO3 Solution with B-Doped ZnO [J].
Gomathisankar, Paramasivan ;
Hachisuka, Katsumasa ;
Katsumata, Hideyuki ;
Suzuki, Tohru ;
Funasaka, Kunihiro ;
Kaneco, Satoshi .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2013, 1 (08) :982-988