Annotation of biologically relevant ligands in UniProtKB using ChEBI

被引:168
作者
Coudert, Elisabeth [1 ]
Gehant, Sebastien [1 ]
de Castro, Edouard [1 ]
Pozzato, Monica [1 ]
Baratin, Delphine [1 ]
Neto, Teresa [1 ]
Sigrist, Christian J. A. [1 ]
Redaschi, Nicole [1 ]
Bridge, Alan [1 ]
机构
[1] Ctr Med Univ Geneva, SIB Swiss Inst Bioinformat, Swiss Prot Grp, CH-1211 Geneva 4, Switzerland
基金
美国国家卫生研究院; 英国生物技术与生命科学研究理事会; 美国国家科学基金会;
关键词
DATABASE;
D O I
10.1093/bioinformatics/btac793
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation To provide high quality, computationally tractable annotation of binding sites for biologically relevant (cognate) ligands in UniProtKB using the chemical ontology ChEBI (Chemical Entities of Biological Interest), to better support efforts to study and predict functionally relevant interactions between protein sequences and structures and small molecule ligands. Results: We structured the data model for cognate ligand binding site annotations in UniProtKB and performed a complete reannotation of all cognate ligand binding sites using stable unique identifiers from ChEBI, which we now use as the reference vocabulary for all such annotations. We developed improved search and query facilities for cognate ligands in the UniProt website, REST API and SPARQL endpoint that leverage the chemical structure data, nomenclature and classification that ChEBI provides. Availability and implementation: Binding site annotations for cognate ligands described using ChEBI are available for UniProtKB protein sequence records in several formats (text, XML and RDF) and are freely available to query and download through the UniProt website (www.uniprot.org), REST API (www.uniprot.org/help/api), SPARQL endpoint (sparql.uniprot.org/) and FTP site (https://ftp.uniprot.org/pub/databases/uniprot/). Contact: alan.bridge@sib.swiss Supplementary information: Supplementary data are available at Bioinformatics online.
引用
收藏
页数:5
相关论文
共 36 条
  • [1] Allot A., 2021, NUCLEIC ACIDS RES, DOI [DOI 10.1093/nar/gkab326, 10.1093/nar/gkab326]
  • [2] Apweiler R, 2004, NUCLEIC ACIDS RES, V32, pD115, DOI [10.1093/nar/gkh131, 10.1093/nar/gkw1099]
  • [3] PDBe: improved findability of macromolecular structure data in the PDB
    Armstrong, David R.
    Berrisford, John M.
    Conroy, Matthew J.
    Gutmanas, Aleksandras
    Anyango, Stephen
    Choudhary, Preeti
    Clark, Alice R.
    Dana, Jose M.
    Deshpande, Mandar
    Dunlop, Roisin
    Gane, Paul
    Gaborova, Romana
    Gupta, Deepti
    Haslam, Pauline
    Koca, Jaroslav
    Mak, Lora
    Mir, Saqib
    Mukhopadhyay, Abhik
    Nadzirin, Nurul
    Nair, Sreenath
    Paysan-Lafosse, Typhaine
    Pravda, Lukas
    Sehnal, David
    Salih, Osman
    Smart, Oliver
    Tolchard, James
    Varadi, Mihaly
    Svobodova-Varekova, Radka
    Zaki, Hossam
    Kleywegt, Gerard J.
    Velankar, Sameer
    [J]. NUCLEIC ACIDS RESEARCH, 2020, 48 (D1) : D335 - D343
  • [4] Rhea, the reaction knowledgebase in 2022
    Bansal, Parit
    Morgat, Anne
    Axelsen, Kristian B.
    Muthukrishnan, Venkatesh
    Coudert, Elisabeth
    Aimo, Lucila
    Hyka-Nouspikel, Nevila
    Gasteiger, Elisabeth
    Kerhornou, Arnaud
    Neto, Teresa Batista
    Pozzato, Monica
    Blatter, Marie-Claude
    Ignatchenko, Alex
    Redaschi, Nicole
    Bridge, Alan
    [J]. NUCLEIC ACIDS RESEARCH, 2022, 50 (D1) : D693 - D700
  • [5] RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences
    Burley, Stephen K.
    Bhikadiya, Charmi
    Bi, Chunxiao
    Bittrich, Sebastian
    Chen, Li
    Crichlow, Gregg, V
    Christie, Cole H.
    Dalenberg, Kenneth
    Di Costanzo, Luigi
    Duarte, Jose M.
    Dutta, Shuchismita
    Feng, Zukang
    Ganesan, Sai
    Goodsell, David S.
    Ghosh, Sutapa
    Green, Rachel Kramer
    Guranovic, Vladimir
    Guzenko, Dmytro
    Hudson, Brian P.
    Lawson, Catherine L.
    Liang, Yuhe
    Lowe, Robert
    Namkoong, Harry
    Peisach, Ezra
    Persikova, Irina
    Randle, Chris
    Rose, Alexander
    Rose, Yana
    Sali, Andrej
    Segura, Joan
    Sekharan, Monica
    Shao, Chenghua
    Tao, Yi-Ping
    Voigt, Maria
    Westbrook, John D.
    Young, Jasmine Y.
    Zardecki, Christine
    Zhuravleva, Marina
    [J]. NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) : D437 - D451
  • [6] Crystallographic study of the recombinant flavin-binding domain of Baker's yeast flavocytochrome b2:: Comparison with the intact wild-type enzyme
    Cunane, LM
    Barton, JD
    Chen, ZW
    Welsh, FE
    Chapman, SK
    Reid, GA
    Mathews, FS
    [J]. BIOCHEMISTRY, 2002, 41 (13) : 4264 - 4272
  • [7] SIFTS: updated Structure Integration with Function, Taxonomy and Sequences resource allows 40-fold increase in coverage of structure-based annotations for proteins
    Dana, Jose M.
    Gutmanas, Aleksandras
    Tyagi, Nidhi
    Qi, Guoying
    O'Donovan, Claire
    Martin, Maria
    Velankar, Sameer
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) : D482 - D489
  • [8] CATH functional families predict functional sites in proteins
    Das, Sayoni
    Scholes, Harry M.
    Sen, Neeladri
    Orengo, Christine
    [J]. BIOINFORMATICS, 2021, 37 (08) : 1099 - 1106
  • [9] Choosing the Best Enzyme Complex Structure Made Easy
    Das, Sayoni
    Orengo, Christine
    [J]. STRUCTURE, 2018, 26 (04) : 528 - 530
  • [10] The C-Terminal Heme Regulatory Motifs of Heme Oxygenase-2 Are Redox-Regulated Heme Binding Sites
    Fleischhacker, Angela S.
    Sharma, Ajay
    Choi, Michelle
    Spencer, Andrea M.
    Bagai, Ireena
    Hoffman, Brian M.
    Ragsdale, Stephen W.
    [J]. BIOCHEMISTRY, 2015, 54 (17) : 2709 - 2718