Segmenting Ischemic Penumbra and Infarct Core Simultaneously on Non-Contrast CT of Patients with Acute Ischemic Stroke Using Novel Convolutional Neural Network

被引:5
作者
Kuang, Hulin [1 ]
Tan, Xianzhen [1 ]
Wang, Jie [1 ]
Qu, Zhe [1 ]
Cai, Yuxin [2 ]
Chen, Qiong [3 ]
Kim, Beom Joon [4 ,5 ]
Qiu, Wu [2 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Hunan Prov Key Lab Bioinformat, Changsha 410083, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Life Sci & Technol, Wuhan 430074, Peoples R China
[3] Wuhan 1 Hosp, Ultrasound Diag Dept, Wuhan 430022, Peoples R China
[4] Seoul Natl Univ, Dept Neurol, Bundang Hosp, Seongnam 13620, South Korea
[5] Seoul Natl Univ, Gyeonggi Reg Cerebrovascular Ctr, Bundang Hosp, Seongnam 13620, South Korea
基金
中国国家自然科学基金;
关键词
acute ischemic stroke; ischemic penumbra and ischemic core segmentation; non-contrast CT; multi-scale convolution; symmetry enhancement; hierarchical deep supervision; HEALTH-CARE PROFESSIONALS; EARLY MANAGEMENT; SEGMENTATION; PERFUSION; TRANSFORMER; GUIDELINES; CNN;
D O I
10.3390/biomedicines12030580
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Differentiating between a salvageable Ischemic Penumbra (IP) and an irreversibly damaged Infarct Core (IC) is important for therapy decision making for acute ischemic stroke (AIS) patients. Existing methods rely on Computed Tomography Perfusion (CTP) or Diffusion-Weighted Imaging-Fluid Attenuated Inversion Recovery (DWI-FLAIR). We designed a novel Convolutional Neural Network named (IPC)-P-2-Net, which relies solely on Non-Contrast Computed Tomography (NCCT) for the automatic and simultaneous segmentation of the IP and IC. In the encoder, Multi-Scale Convolution (MSC) blocks were proposed to capture effective features of ischemic lesions, and in the deep levels of the encoder, Symmetry Enhancement (SE) blocks were also designed to enhance anatomical symmetries. In the attention-based decoder, hierarchical deep supervision was introduced to address the challenge of differentiating between the IP and IC. We collected 197 NCCT scans from AIS patients to evaluate the proposed method. On the test set, (IPC)-P-2-Net achieved Dice Similarity Scores of 42.76 +/- 21.84%, 33.54 +/- 24.13% and 65.67 +/- 12.30% and lesion volume correlation coefficients of 0.95 (p < 0.001), 0.61 (p < 0.001) and 0.93 (p < 0.001) for the IP, IC and IP + IC, respectively. The results indicated that NCCT could potentially be used as a surrogate technique of CTP for the quantitative evaluation of the IP and IC.
引用
收藏
页数:15
相关论文
共 45 条
[1]  
Barman A, 2019, I S BIOMED IMAGING, P1873, DOI [10.1109/isbi.2019.8759475, 10.1109/ISBI.2019.8759475]
[2]   Identification of infarct core and ischemic penumbra using computed tomography perfusion and deep learning [J].
Bhurwani, Mohammad Mahdi Shiraz ;
Boutelier, Timothe ;
Davis, Adam ;
Gautier, Guillaume ;
Swetz, Dennis ;
Rava, Ryan A. A. ;
Raguenes, Dorian ;
Waqas, Muhammad ;
Snyder, Kenneth V. V. ;
Siddiqui, Adnan H. H. ;
Ionita, Ciprian N. N. .
JOURNAL OF MEDICAL IMAGING, 2023, 10 (01)
[3]   Association of Time From Stroke Onset to Groin Puncture With Quality of Reperfusion After Mechanical Thrombectomy A Meta-analysis of Individual Patient Data From 7 Randomized Clinical Trials [J].
Bourcier, Romain ;
Goyal, Mayank ;
Liebeskind, David S. ;
Muir, Keith W. ;
Desal, Hubert ;
Siddiqui, Adnan H. ;
Dippel, Diederik W. J. ;
Majoie, Charles B. ;
van Zwam, Wim H. ;
Jovin, Tudor G. ;
Levy, Elad I. ;
Mitchell, Peter J. ;
Berkhemer, Olvert A. ;
Davis, Stephen M. ;
Derraz, Linad ;
Donnan, Geoffrey A. ;
Demchuk, Andrew M. ;
van Oostenbrugge, Robert J. ;
Kelly, Michael ;
Roos, Yvo B. ;
Jahan, Reza ;
van der Lugt, Aad ;
Sprengers, Marieke ;
Velasco, Stephane ;
Nijeholt, Geert J. Lycklama A. ;
Ben Hassen, Wagih ;
Burns, Paul ;
Brown, Scott ;
Chabert, Emmanuel ;
Krings, Timo ;
Chloe, Hana ;
Weimar, Christian ;
Campbell, Bruce C. V. ;
Ford, Gary A. ;
Ribo, Marc ;
White, Phil ;
Cloud, Geoffrey C. ;
San Roman, Luis ;
Davalos, Antoni ;
Naggara, Olivier ;
Hill, Michael D. ;
Bracard, Serge .
JAMA NEUROLOGY, 2019, 76 (04) :405-411
[4]   Endovascular Therapy for Ischemic Stroke with Perfusion-Imaging Selection [J].
Campbell, B. C. V. ;
Mitchell, P. J. ;
Kleinig, T. J. ;
Dewey, H. M. ;
Churilov, L. ;
Yassi, N. ;
Yan, B. ;
Dowling, R. J. ;
Parsons, M. W. ;
Oxley, T. J. ;
Wu, T. Y. ;
Brooks, M. ;
Simpson, M. A. ;
Miteff, F. ;
Levi, C. R. ;
Krause, M. ;
Harrington, T. J. ;
Faulder, K. C. ;
Steinfort, B. S. ;
Priglinger, M. ;
Ang, T. ;
Scroop, R. ;
Barber, P. A. ;
McGuinness, B. ;
Wijeratne, T. ;
Phan, T. G. ;
Chong, W. ;
Chandra, R. V. ;
Bladin, C. F. ;
Badve, M. ;
Rice, H. ;
de Villiers, L. ;
Ma, H. ;
Desmond, P. M. ;
Donnan, G. A. ;
Davis, S. M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (11) :1009-1018
[5]  
Cao Hu, 2023, Computer Vision - ECCV 2022 Workshops: Proceedings. Lecture Notes in Computer Science (13803), P205, DOI 10.1007/978-3-031-25066-8_9
[6]  
Chen J., 2021, arXiv
[7]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[8]   Acute and sub-acute stroke lesion segmentation from multimodal MRI [J].
Clerigues, Albert ;
Valverde, Sergi ;
Bernal, Jose ;
Freixenet, Jordi ;
Oliver, Arnau ;
Llado, Xavier .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 194
[9]   Deep symmetric three-dimensional convolutional neural networks for identifying acute ischemic stroke via diffusion-weighted images [J].
Cui, Liyuan ;
Han, Shanhua ;
Qi, Shouliang ;
Duan, Yang ;
Kang, Yan ;
Luo, Yu .
JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2021, 29 (04) :551-566
[10]  
Evans Matthew R B, 2017, Pract Neurol, V17, P252, DOI [10.1136/practneurol-2017-001685, 10.1136/practneurol-2017-001685]