Colloidal nanomaterials;
Machine learning;
Hot -injection synthesis;
Hydrothermal synthesis;
Chemical reduction;
ORGANIC-INORGANIC PEROVSKITES;
LEAD HALIDE PEROVSKITES;
SUPPORT VECTOR MACHINE;
ONE-POT SYNTHESIS;
QUANTUM DOTS;
SHAPE-CONTROL;
NEURAL-NETWORK;
PATTERN-CLASSIFICATION;
NANOCRYSTAL GROWTH;
OPTICAL-PROPERTIES;
D O I:
10.1016/j.mtchem.2023.101837
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Artificial intelligence (AI) technologies, including machine learning and deep learning, have become ingrained in both everyday life and in scientific research. In chemistry, these algorithms are most commonly used for the development of new materials and drugs, recognition of microscopy images, and analysis of spectral data. Finding relationships between the parameters of chemical synthesis and the properties of the resultant materials is often challenging because of the large number of variations of the temperature and time of synthesis, the chemical composition and ratio of precursors, etc. Applying machine and deep learning to the organization of chemical experiments will considerably reduce the empiricism issues in chemical research. Colloidal nanomaterials, whose morphology, size, and phase composition are influenced directly not only by the synthesis conditions, but the reagents or solvents purity and other indistinct factors are highly demanded in optoelectronics, catalysis, biological imaging, and sensing applications. In recent years, AI methods have been increasingly used for determining the key factors of synthesis and selecting the optimal reaction conditions for obtaining nanomaterials with precisely controlled and reproducible characteristics. The purpose of this review is to analyze the current progress in the AI-assisted optimization of the most common methods of production of colloidal nanomaterials, including colloidal and hydrothermal syntheses, chemical reduction, and synthesis in flow reactors.
机构:
KTH Royal Inst Technol, Div Transport Planning, Brinellvagen 23, SE-10044 Stockholm, SwedenKTH Royal Inst Technol, Div Transport Planning, Brinellvagen 23, SE-10044 Stockholm, Sweden
Minbashi, Niloofar
Sipila, Hans
论文数: 0引用数: 0
h-index: 0
机构:
KTH Royal Inst Technol, Div Transport Planning, Brinellvagen 23, SE-10044 Stockholm, SwedenKTH Royal Inst Technol, Div Transport Planning, Brinellvagen 23, SE-10044 Stockholm, Sweden
Sipila, Hans
Palmqvist, Carl -William
论文数: 0引用数: 0
h-index: 0
机构:
KTH Royal Inst Technol, Div Transport Planning, Brinellvagen 23, SE-10044 Stockholm, SwedenKTH Royal Inst Technol, Div Transport Planning, Brinellvagen 23, SE-10044 Stockholm, Sweden
Palmqvist, Carl -William
Bohlin, Markus
论文数: 0引用数: 0
h-index: 0
机构:
KTH Royal Inst Technol, Div Transport Planning, Brinellvagen 23, SE-10044 Stockholm, SwedenKTH Royal Inst Technol, Div Transport Planning, Brinellvagen 23, SE-10044 Stockholm, Sweden
Bohlin, Markus
Kordnejad, Behzad
论文数: 0引用数: 0
h-index: 0
机构:
KTH Royal Inst Technol, Div Transport Planning, Brinellvagen 23, SE-10044 Stockholm, SwedenKTH Royal Inst Technol, Div Transport Planning, Brinellvagen 23, SE-10044 Stockholm, Sweden
机构:
CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USACALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
Wu, Zachary
Kan, S. B. Jennifer
论文数: 0引用数: 0
h-index: 0
机构:
CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USACALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
Kan, S. B. Jennifer
Lewis, Russell D.
论文数: 0引用数: 0
h-index: 0
机构:
CALTECH, Div Biol & Bioengn, Pasadena, CA 91125 USACALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
Lewis, Russell D.
Wittmann, Bruce J.
论文数: 0引用数: 0
h-index: 0
机构:
CALTECH, Div Biol & Bioengn, Pasadena, CA 91125 USACALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
Wittmann, Bruce J.
Arnold, Frances H.
论文数: 0引用数: 0
h-index: 0
机构:
CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
CALTECH, Div Biol & Bioengn, Pasadena, CA 91125 USACALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA