Enhanced quantum channel uncertainty relations by skew information

被引:1
作者
Hu, Xiaoli [1 ]
Hu, Naihong [2 ,3 ]
Yu, Bing [4 ]
Jing, Naihuan [5 ]
机构
[1] Jianghan Univ, Sch Artificial Intelligence, Wuhan 430056, Peoples R China
[2] East China Normal Univ, Key Lab Math & Engn Applicat, Sch Math Sci, MOE, Shanghai 200241, Peoples R China
[3] East China Normal Univ, Shanghai Key Lab PMMP, Shanghai 200241, Peoples R China
[4] Guangdong Polytech Normal Univ, Sch Math & Syst Sci, Guangzhou 510665, Peoples R China
[5] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
关键词
Uncertainty relation; Quantum channel; Skew information;
D O I
10.1007/s11128-023-04113-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By revisiting the mathematical foundation of the uncertainty relation, skew information-based uncertainty sequences are developed for any two quantum channels. A reinforced version of the Cauchy-Schwarz inequality is adopted to improve the uncertainty relation, and a sampling technique of observables' coordinates is used to offset randomness in the inequality. It is shown that the lower bounds of the uncertainty relations are tighter than some previous studies.
引用
收藏
页数:16
相关论文
共 39 条
  • [1] [Anonymous], 1995, Operational quantum physics
  • [2] Entanglement-assisted guessing of complementary measurement outcomes
    Berta, Mario
    Coles, Patrick J.
    Wehner, Stephanie
    [J]. PHYSICAL REVIEW A, 2014, 90 (06):
  • [3] Experimental investigation of criteria for continuous variable entanglement
    Bowen, WP
    Schnabel, R
    Lam, PK
    Ralph, TC
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (04)
  • [4] Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information
    Candès, EJ
    Romberg, J
    Tao, T
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) : 489 - 509
  • [5] Source-Independent Quantum Random Number Generation
    Cao, Zhu
    Zhou, Hongyi
    Yuan, Xiao
    Ma, Xiongfeng
    [J]. PHYSICAL REVIEW X, 2016, 6 (01):
  • [6] Entropic uncertainty relations and their applications
    Coles, Patrick J.
    Berta, Mario
    Tomamichel, Marco
    Wehner, Stephanie
    [J]. REVIEWS OF MODERN PHYSICS, 2017, 89 (01)
  • [7] UNCERTAINTY IN QUANTUM MEASUREMENTS
    DEUTSCH, D
    [J]. PHYSICAL REVIEW LETTERS, 1983, 50 (09) : 631 - 633
  • [8] Skew information-based uncertainty relations for quantum channels
    Fu, Shuangshuang
    Sun, Yuan
    Luo, Shunlong
    [J]. QUANTUM INFORMATION PROCESSING, 2019, 18 (08)
  • [9] Quantum-state disturbance versus information gain: Uncertainty relations for quantum information
    Fuchs, CA
    Peres, A
    [J]. PHYSICAL REVIEW A, 1996, 53 (04): : 2038 - 2045
  • [10] Giovannetti V, 2011, NAT PHOTONICS, V5, P222, DOI [10.1038/nphoton.2011.35, 10.1038/NPHOTON.2011.35]