Artificial intelligence-based control of continuous polymerization reactor with input dead-zone

被引:4
作者
Maaruf, Muhammad [1 ,2 ,3 ]
Ali, Mohammed Mohammed [1 ]
Al-Sunni, Fouad M. [1 ]
机构
[1] KFUPM, Control & Instrumentat Engn Dept, Dhahran 31261, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, KACARE Energy Res & Innovat Ctr, Dhahran 31261, Saudi Arabia
[3] Interdisciplinary Res Ctr Smart Mobil & Logist, Dhahran, Saudi Arabia
关键词
Neural network; Artificial intelligence; Particle swamp optimization; Backstepping; Fractional order sliding mode control; Dead-zone; Polymerization reactor; SLIDING MODE CONTROL; STIRRED-TANK REACTOR; FEEDBACK-CONTROL; ONLINE ESTIMATION; FRAMEWORK; QUALITY; SYSTEMS;
D O I
10.1007/s40435-022-01038-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper utilizes artificial intelligence (AI) techniques to address the trajectory tracking problem of a continuous polymerization reactor with unknown dynamics and unknown asymmetric input dead-zone nonlinearities. A backstepping fractional sliding mode control (BFOSMC) has been proposed to force the average molecular weight (AMW) and the reactor temperature to track the desired trajectories. Due to the simplicity, easy implementation, and robustness of particle swarm optimization (PSO) technique, it is used to optimize the parameters of the controller. The unknown dynamics of the reactor are approximated with feed-forward neural networks (NN). The input dead-zones are estimated and compensated by adaptive offset terms in the control laws. A Lyapunov theory is employed to prove the stability of the NNBFOSMC. The simulation study verifies that our AI-based algorithm resulted in a better performance.
引用
收藏
页码:1153 / 1165
页数:13
相关论文
共 43 条
  • [1] Hashim HA, 2018, Arxiv, DOI arXiv:1710.05423
  • [2] Bradford E, 2019, 2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), P3144, DOI [10.23919/ecc.2019.8795684, 10.23919/ECC.2019.8795684]
  • [3] Optimal online soft sensor for product quality monitoring in propylene polymerization process
    Cheng, Zhong
    Liu, Xinggao
    [J]. NEUROCOMPUTING, 2015, 149 : 1216 - 1224
  • [4] Molecular weight distribution modeling of LDPE in a continuous stirred-tank reactor using coupled deterministic and stochastic approach
    Choi, Solji
    Lee, Yongkyu
    Park, Seongho
    Lee, Jong Min
    [J]. KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2022, 39 (03) : 798 - 810
  • [5] FEEDFORWARD AND FEEDBACK-CONTROL OF A SOLUTION COPOLYMERIZATION REACTOR
    CONGALIDIS, JP
    RICHARDS, JR
    RAY, WH
    [J]. AICHE JOURNAL, 1989, 35 (06) : 891 - 907
  • [6] ONLINE ESTIMATION OF MICROBIAL SPECIFIC GROWTH-RATES - AN ILLUSTRATIVE CASE-STUDY
    DOCHAIN, D
    PAUSS, A
    [J]. CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1988, 66 (04) : 626 - 631
  • [7] Robust Adaptive Sliding Mode Control of Nonlinear Systems Using Neural Network
    El Ferik, Sami
    Mahmoud, Magdi S.
    Maaruf, Muhammad
    [J]. PROCEEDINGS OF THE 2020 17TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD 2020), 2020, : 591 - 596
  • [8] Feng JH, 2018, CHIN CONTR CONF, P3035, DOI 10.23919/ChiCC.2018.8483875
  • [9] Beyond Dispersity: Deterministic Control of Polymer Molecular Weight Distribution
    Gentekos, Dillon T.
    Dupuis, Lauren N.
    Fors, Brett P.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (06) : 1848 - 1851
  • [10] Online Optimal Feedback Control of Polymerization Reactors: Application to Polymerization of Acrylamide-Water-Potassium Persulfate (KPS) System
    Ghadipasha, Navid
    Zhu, Wenbo
    Romagnoli, Jose A.
    McAfee, Terry
    Zekoski, Thomas
    Reed, Wayne F.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (25) : 7322 - 7335