Hyperspectral Image Denoising via Texture-Preserved Total Variation Regularizer

被引:10
作者
Chen, Yang [1 ]
Cao, Wenfei [1 ]
Pang, Li [2 ,3 ]
Peng, Jiangjun [3 ,4 ]
Cao, Xiangyong [2 ,3 ]
机构
[1] Shaanxi Normal Univ, Sch Math & Stat, Xian 710119, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Comp Sci & Technol, Xian 710049, Peoples R China
[3] Xiao Jiaotong Univ, Key Lab Intelligent Networks & Network Secur, Minist Educ, Xian 710049, Peoples R China
[4] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国国家自然科学基金;
关键词
Hyperspectral image (HSI) denoising; texture-preserved total variation (TPTV); total variation (TV); weighting scheme; CLASSIFICATION; NETWORK;
D O I
10.1109/TGRS.2023.3292518
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The total variation (TV) regularizer is a widely used technique in image-processing tasks to model an image's local smoothness property. Intrinsically, the TV regularizer imposes sparsity constraints on the gradient maps of the image, which inevitably weakens the image texture structure and thus affects the quality of image restoration. To alleviate this issue, we propose a novel texture-preserved TV (TPTV) regularizer for hyperspectral images (HSIs) by introducing a weighting scheme. Specifically, the weights are assigned to the gradient maps of HSIs, which help slack the sparsity constraint for the pixels with large variations, thus preserving the texture structure. Additionally, we elaborate an empirical method to learn the weights adaptively from observed HSIs. Then, we propose an HSI denoising method based on the TPTV regularizer. Experimental results on synthetic and real HSIs illustrate the superiority of our proposed method over other state-of-the-art methods. In addition, the proposed weighting scheme can be finely embedded into other TV regularizers and protect the image texture. The experimental results also demonstrate that the denoising performance of the original method is significantly improved after embedding the weighting scheme.
引用
收藏
页数:14
相关论文
共 55 条
[1]   Hyperspectral Image Denoising Using Spatio-Spectral Total Variation [J].
Aggarwal, Hemant Kumar ;
Majumdar, Angshul .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (03) :442-446
[2]   Deep Spatial-Spectral Global Reasoning Network for Hyperspectral Image Denoising [J].
Cao, Xiangyong ;
Fu, Xueyang ;
Xu, Chen ;
Meng, Deyu .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[3]   Hyperspectral Image Classification With Convolutional Neural Network and Active Learning [J].
Cao, Xiangyong ;
Yao, Jing ;
Xu, Zongben ;
Meng, Deyu .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07) :4604-4616
[4]   Hyperspectral Image Classification With Markov Random Fields and a Convolutional Neural Network [J].
Cao, Xiangyong ;
Zhou, Feng ;
Xu, Lin ;
Meng, Deyu ;
Xu, Zongben ;
Paisley, John .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (05) :2354-2367
[5]   Low-rank Matrix Factorization under General Mixture Noise Distributions [J].
Cao, Xiangyong ;
Chen, Yang ;
Zhao, Qian ;
Meng, Deyu ;
Wang, Yao ;
Wang, Dong ;
Xu, Zongben .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1493-1501
[6]  
Chein-I Chang, 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293), P509, DOI 10.1109/IGARSS.1999.773549
[7]  
Chen Y., 2022, IEEE Trans. Geosci. Remote Sens., V60
[8]   Hyperspectral Image Denoising With Weighted Nonlocal Low-Rank Model and Adaptive Total Variation Regularization [J].
Chen, Yang ;
Cao, Wenfei ;
Pang, Li ;
Cao, Xiangyong .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[9]   Denoising Hyperspectral Image With Non-i.i.d. Noise Structure [J].
Chen, Yang ;
Cao, Xiangyong ;
Zhao, Qian ;
Meng, Deyu ;
Xu, Zongben .
IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (03) :1054-1066
[10]   Sparse Representation for Target Detection in Hyperspectral Imagery [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2011, 5 (03) :629-640