Extension of a Unique Solution in Generalized Neutrosophic Cone Metric Spaces

被引:0
|
作者
Ishtiaq, Umar [1 ]
Asif, Muhammad [2 ]
Hussain, Aftab [3 ]
Ahmad, Khaleel [4 ]
Saleem, Iqra [4 ]
Al Sulami, Hamed [3 ]
机构
[1] Univ Management & Technol, Off Res Innovat & Commercializat, Lahore 54000, Pakistan
[2] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
[3] King Abdulaziz Univ, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[4] Bahauddin Zakariya Univ, Dept Math, Multan Sub Campus Vehari, Vehari 61100, Pakistan
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 01期
关键词
cone metric space; intuitionistic fuzzy metric space; contraction mappings; fixed point; generalized cone metric space; FIXED-POINT THEOREMS;
D O I
10.3390/sym15010094
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In order to solve issues that arise in various branches of mathematical analysis, such as split feasibility problems, variational inequality problems, nonlinear optimization issues, equilibrium problems, complementarity issues, selection and matching problems, and issues proving the existence of solutions to integral and differential equations, fixed point theory provides vital tools. In this study, we discuss topological structure and several fixed-point theorems in the context of generalized neutrosophic cone metric spaces. In these spaces, the symmetric properties play an important role. We examine the existence and a uniqueness of a solution by utilizing new types of contraction mappings under some circumstances. We provide an example in which we show the existence and a uniqueness of a solution by utilizing our main result. These results are more generalized in the existing literature.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Conditions of regularity in cone metric spaces
    Alimohammady, M.
    Balooee, J.
    Radojevic, S.
    Rakocevic, V.
    Roohi, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (13) : 6359 - 6363
  • [22] On statistical convergence in cone metric spaces
    Li, Kedian
    Lin, Shou
    Ge, Ying
    TOPOLOGY AND ITS APPLICATIONS, 2015, 196 : 641 - 651
  • [23] On partial metric spaces and partial cone metric spaces
    Moshokoa, Seithuti
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2017, 46 (06): : 1069 - 1075
  • [24] GENERALIZED METRIC SPACES: SURVEY
    Dosenovic, Tatjana
    Radenovic, Stojan
    Sedghi, Shaban
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, 9 (01): : 3 - 17
  • [25] Common Fixed Point Theorems for Occasionally Weakly Compatible Mappings in Neutrosophic Cone Metric Spaces
    Shakila V.B.
    Jeyaraman M.
    Neutrosophic Sets and Systems, 2023, 56 : 361 - 376
  • [26] COMMON FIXED POINTS OF GENERALIZED CONTRACTIVE MAPS IN CONE METRIC SPACES
    Azam, A.
    Arshad, M.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2009, 35 (02) : 255 - 264
  • [27] Some results in cone metric spaces with applications in homotopy theory
    Nazam, Muhammad
    Arif, Anam
    Mahmood, Hasan
    Park, Choonkil
    OPEN MATHEMATICS, 2020, 18 : 295 - 306
  • [28] OPERATORIAL CONTRACTIONS ON SOLID CONE METRIC SPACES
    Cvetkovic, Marija
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (07) : 1399 - 1408
  • [29] VECTOR COMPARISON OPERATORS IN CONE METRIC SPACES
    Olaru, Ion Marian
    Secelean, Nicolae Adrian
    MATHEMATICAL REPORTS, 2014, 16 (03): : 431 - 442
  • [30] Dugundji's theorem for cone metric spaces
    Kieu Phuong Chi
    Tran Van An
    APPLIED MATHEMATICS LETTERS, 2011, 24 (03) : 387 - 390