Extension of a Unique Solution in Generalized Neutrosophic Cone Metric Spaces

被引:0
|
作者
Ishtiaq, Umar [1 ]
Asif, Muhammad [2 ]
Hussain, Aftab [3 ]
Ahmad, Khaleel [4 ]
Saleem, Iqra [4 ]
Al Sulami, Hamed [3 ]
机构
[1] Univ Management & Technol, Off Res Innovat & Commercializat, Lahore 54000, Pakistan
[2] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
[3] King Abdulaziz Univ, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[4] Bahauddin Zakariya Univ, Dept Math, Multan Sub Campus Vehari, Vehari 61100, Pakistan
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 01期
关键词
cone metric space; intuitionistic fuzzy metric space; contraction mappings; fixed point; generalized cone metric space; FIXED-POINT THEOREMS;
D O I
10.3390/sym15010094
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In order to solve issues that arise in various branches of mathematical analysis, such as split feasibility problems, variational inequality problems, nonlinear optimization issues, equilibrium problems, complementarity issues, selection and matching problems, and issues proving the existence of solutions to integral and differential equations, fixed point theory provides vital tools. In this study, we discuss topological structure and several fixed-point theorems in the context of generalized neutrosophic cone metric spaces. In these spaces, the symmetric properties play an important role. We examine the existence and a uniqueness of a solution by utilizing new types of contraction mappings under some circumstances. We provide an example in which we show the existence and a uniqueness of a solution by utilizing our main result. These results are more generalized in the existing literature.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Some fixed point results for ξ-chainable neutrosophic and generalized neutrosophic cone metric spaces with application
    Riaz, Muhammad
    Ishtiaq, Umar
    Park, Choonkil
    Ahmad, Khaleel
    Uddin, Fahim
    AIMS MATHEMATICS, 2022, 7 (08): : 14756 - 14784
  • [2] GENERALIZED FIXED POINT THEOREMS IN CONE METRIC SPACES
    Kim, Seung Hyun
    Lee, Byung Soo
    KOREAN JOURNAL OF MATHEMATICS, 2012, 20 (03): : 353 - 360
  • [3] Generalized φ-contraction for a pair of mappings on cone metric spaces
    Razani, Abdolrahman
    Rakocevic, Vladimir
    Goodarzi, Zahra
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (22) : 8899 - 8906
  • [4] On cone metric spaces: A survey
    Jankovic, Slobodanka
    Kadelburg, Zoran
    Radenovic, Stojan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (07) : 2591 - 2601
  • [5] THE EQUIVALENCE OF CONE METRIC SPACES AND METRIC SPACES
    Feng, Yuqiang
    Mao, Wei
    FIXED POINT THEORY, 2010, 11 (02): : 259 - 263
  • [6] Fixed points of generalized contraction mappings in cone metric spaces
    Turkoglu, Duran
    Abuloha, Muhib
    Abdeljawad, Thabet
    MATHEMATICAL COMMUNICATIONS, 2011, 16 (02) : 325 - 334
  • [7] Fixed point theory for generalized contractions in cone metric spaces
    Farajzadeh, A. P.
    Amini-Harandi, A.
    Baleanu, D.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (02) : 708 - 712
  • [8] FIXED POINTS FOR CONTRACTION MAPPINGS IN GENERALIZED CONE METRIC SPACES
    Al-Khaleel, Mohammad
    Al-Sharif, Sharifa
    Khandaqji, Mona
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2012, 5 (04): : 291 - 307
  • [9] FIXED POINT THEOREMS FOR ( Ψ-Φ)-CONTRACTIONS IN GENERALIZED NEUTROSOPHIC METRIC SPACES
    Johnsy, J.
    Jeyaraman, M.
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 16 (01): : 13 - 25
  • [10] On the metrizability of cone metric spaces
    Khani, M.
    Pourmahdian, M.
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (02) : 190 - 193