Hall algebras of two equivalent extriangulated categories

被引:0
作者
Ruan, Shiquan [1 ]
Wang, Li [2 ]
Zhang, Haicheng [3 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Anhui Polytech Univ, Sch Math Phys & Finance, Middle Beijing Rd, Wuhu 241000, Anhui, Peoples R China
[3] Nanjing Normal Univ, Sch Math Sci, 1 Wenyuan Rd Qixia Dist, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
extriangulated category; extriangulated equivalence; Hall algebra; quantum cluster algebra; TRIANGULATED CATEGORIES;
D O I
10.21136/CMJ.2023.0344-22
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any positive integer n, let A(n) be a linearly oriented quiver of type A with n vertices. It is well-known that the quotient of an exact category by projective-injectives is an extriangulated category. We show that there exists an extriangulated equivalence between the extriangulated categories Mn+1 and F-n, where Mn+1 and F-n are the two extriangulated categories corresponding to the representation category of A(n+1) and the morphism category of projective representations of A(n), respectively. As a by-product, the Hall algebras of Mn+1 and F-n are isomorphic. As an application, we use the Hall algebra of M2n+1 to relate with the quantum cluster algebras of type A(2n).
引用
收藏
页码:95 / 113
页数:19
相关论文
共 17 条
[1]   Transport of structure in higher homological algebra [J].
Bennett-Tennenhaus, Raphael ;
Shah, Amit .
JOURNAL OF ALGEBRA, 2021, 574 :514-549
[2]   Quantum cluster algebras [J].
Berenstein, A ;
Zelevinsky, A .
ADVANCES IN MATHEMATICS, 2005, 195 (02) :405-455
[3]   From triangulated categories to cluster algebras [J].
Caldero, Philippe ;
Keller, Bernhard .
INVENTIONES MATHEMATICAE, 2008, 172 (01) :169-211
[4]   On Sectional Paths in a Category of Complexes of Fixed Size [J].
Chaio, Claudia ;
Pratti, Isabel ;
Jose Souto-Salorio, Maria .
ALGEBRAS AND REPRESENTATION THEORY, 2017, 20 (02) :289-311
[5]  
CHEN X, IN PRESS
[6]   Acyclic quantum cluster algebras via Hall algebras of morphisms [J].
Ding, Ming ;
Xu, Fan ;
Zhang, Haicheng .
MATHEMATISCHE ZEITSCHRIFT, 2020, 296 (3-4) :945-968
[7]   Cluster algebras I: Foundations [J].
Fomin, S ;
Zelevinsky, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (02) :497-529
[8]   Quantum cluster characters of Hall algebras revisited [J].
Fu, Changjian ;
Peng, Liangang ;
Zhang, Haicheng .
SELECTA MATHEMATICA-NEW SERIES, 2023, 29 (01)
[9]  
Gorsky Maximilian, 2021, ARXIV
[10]  
Hubery A, 2006, CONTEMP MATH, V406, P51