Some generalizations of fuzzy soft ((k)over-cap* - (A)over-cap)-quasinormal operators in fuzzy soft Hilbert spaces

被引:3
作者
Mohsen, Salim Dawood [1 ]
机构
[1] Mustansiriyah Univ, Dept Math, Baghdad, Iraq
关键词
FS-((k)over-cap* - (A)over-cap)-quasinormal qperator; Fuzzy soft Hermation operator; Fuzzy soft quasinormal operator; FS-convergent sequaence;
D O I
10.47974/JIM-1612
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is a continuation of generalizations in field operator theory in mathematics, such as we introduce new classes of fuzzy soft operator, which namely fuzzy soft ((k) over cap* - (A) over cap)-quasinormal operator in fuzzy soft Hilbert space, and shortly FS-((k) over cap* - (A) over cap)-quasinormal operator. Give the text of the most important of these theorems with explains important properties for this concept and relationships with other types in the same filed finally more characterizations of FS-((k) over cap* - (A) over cap)-quasinormal operator have been introduced in this article.
引用
收藏
页码:1133 / 1143
页数:11
相关论文
共 24 条
  • [1] Population growth equation by fuzzy common integral transforms
    Abdulrasool, Duha Ezzuldein
    Alkiffai, Ameera N.
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (06) : 1909 - 1918
  • [2] The class of S-operators on Hilbert space
    Abdulwahid, Elaf S.
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (05) : 1401 - 1407
  • [3] Sharp upper bounds on forgotten and SK indices of cactus graph
    Alsinai, Ammar
    Rehman, Hafiz Mutee ur
    Manzoor, Yasir
    Cancan, Murat
    Tas, Ziyattin
    [J]. JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2023, 26 (01) : 281 - 302
  • [4] Beaula T, 2015, Int. J. Fuzzy Math. Arch., V9, P81
  • [5] Das S., 2013, Ann. Fuzzy Math. Inform, V6, P151
  • [6] Farahani M.R., 2022, Mathematical Statistician and Engineering Applications, V71, P142
  • [7] Faried N., 2020, Abst. Appl. Anal., DOI [10.1155/2020/5804957, DOI 10.1155/2020/5804957]
  • [8] Faried N, 2020, Adv. Math. Sci. J., V9, P73, DOI [10.37418/amsj.9.1.7, DOI 10.37418/AMSJ.9.1.7]
  • [9] Faried N., 2020, Appl. Math. Inf. Sci., V14, P709, DOI [10.18576/amis/140419, DOI 10.18576/AMIS/140419]
  • [10] Fuzzy soft Hilbert spaces
    Faried, Nashat
    Ali, Mohamed S. S.
    Sakr, Hanan H.
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2021, 22 (02): : 142 - 157