Medical image segmentation method based on multi-feature interaction and fusion over cloud computing

被引:59
作者
He, Xianyu [1 ,2 ]
Qi, Guanqiu [3 ]
Zhu, Zhiqin [1 ]
Li, Yuanyuan [1 ]
Cong, Baisen [4 ,5 ]
Bai, Litao [2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R China
[2] Chongqing Med Univ, Affiliated Hosp 2, Dept Integrated Chinese & Western Med, Chongqing 400010, Peoples R China
[3] State Univ New York Buffalo State, Comp Informat Syst Dept, Buffalo, NY 14222 USA
[4] DH Shanghai Diagnost Co Ltd, Diagnost Digital, Shanghai 200335, Peoples R China
[5] Danaher Co, Shanghai 200335, Peoples R China
基金
中国国家自然科学基金;
关键词
Medical image segmentation; Transformer; Cloud computing; Interactive fusion;
D O I
10.1016/j.simpat.2023.102769
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Medical image segmentation is a crucial task in computer-aided diagnosis. While deep learning has significantly improved this field, relying solely on local computing power makes it challenging to achieve real-time segmentation results. Furthermore, traditional convolutional neural networks (CNNs) lack the ability to extract global features. To address these issues, this paper proposes a cloud-based medical image segmentation method that leverages multi -feature extraction and interactive fusion. Specifically, this method employs cloud computing to process a large number of medical images and overcome local computing power limitations. It also combines Transformer and CNNs to extract global and local features, respectively, and introduces an interactive fusion attention module to improve segmentation accuracy. The proposed approach is validated on multiple medical image datasets, and experimental results demonstrate its effectiveness and progress.
引用
收藏
页数:12
相关论文
共 34 条
[1]   A View of Cloud Computing [J].
Armbrust, Michael ;
Fox, Armando ;
Griffith, Rean ;
Joseph, Anthony D. ;
Katz, Randy ;
Konwinski, Andy ;
Lee, Gunho ;
Patterson, David ;
Rabkin, Ariel ;
Stoica, Ion ;
Zaharia, Matei .
COMMUNICATIONS OF THE ACM, 2010, 53 (04) :50-58
[2]  
Bakas S, 2019, Arxiv, DOI arXiv:1811.02629
[3]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[4]   Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl [J].
Caicedo, Juan C. ;
Goodman, Allen ;
Karhohs, Kyle W. ;
Cimini, Beth A. ;
Ackerman, Jeanelle ;
Haghighi, Marzieh ;
Heng, CherKeng ;
Becker, Tim ;
Minh Doan ;
McQuin, Claire ;
Rohban, Mohammad ;
Singh, Shantanu ;
Carpenter, Anne E. .
NATURE METHODS, 2019, 16 (12) :1247-+
[5]   Cloud Computing for brain segmentation technology [J].
Chang, Victor .
2013 IEEE FIFTH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING TECHNOLOGY AND SCIENCE (CLOUDCOM), VOL 1, 2013, :499-504
[6]  
Chen J., 2021, arXiv, DOI DOI 10.48550/ARXIV.2102.04306
[7]  
Dai Z, 2021, ADV NEUR IN, V34
[8]   Cloud Computing: Issues and Challenges [J].
Dillon, Tharam ;
Wu, Chen ;
Chang, Elizabeth .
2010 24TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS (AINA), 2010, :27-33
[9]  
Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929
[10]   Studierfenster: an Open Science Cloud-Based Medical Imaging Analysis Platform [J].
Egger, Jan ;
Wild, Daniel ;
Weber, Maximilian ;
Bedoya, Christopher A. Ramirez ;
Karner, Florian ;
Prutsch, Alexander ;
Schmied, Michael ;
Dionysio, Christina ;
Krobath, Dominik ;
Jin, Yuan ;
Gsaxner, Christina ;
Li, Jianning ;
Pepe, Antonio .
JOURNAL OF DIGITAL IMAGING, 2022, 35 (02) :340-355