A High-Energy Asymmetric Supercapacitor Based on Tomato-Leaf-Derived Hierarchical Porous Activated Carbon and Electrochemically Deposited Polyaniline Electrodes for Battery-Free Heart-Pulse-Rate Monitoring

被引:51
作者
Aziz, Md. Abdul [1 ,2 ]
Shah, Syed Shaheen [1 ,3 ,8 ]
Mahnashi, Yaqub Alhussain [4 ,5 ]
Mahfoz, Wael [6 ]
Alzahrani, Atif Saeed [1 ,7 ]
Hakeem, Abbas Saeed [1 ]
Shaikh, M. Nasiruzzaman [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Hydrogen & Energy Storag, KFUPM Box 5040, Dhahran 31261, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, KA CARE Energy Res & Innovat Ctr, Dhahran 31261, Saudi Arabia
[3] King Fahd Univ Petr & Minerals, Phys Dept, KFUPM Box 5047, Dhahran 31261, Saudi Arabia
[4] King Fahd Univ Petr & Minerals, Elect Engn Dept, KFUPM Box 5047, Dhahran 31261, Saudi Arabia
[5] King Fahd Univ Petr & Minerals, Ctr Commun Syst & Sensing, Dhahran 31261, Saudi Arabia
[6] King Fahd Univ Petr & Minerals, Chem Dept, Dhahran 31261, Saudi Arabia
[7] King Fahd Univ Petr & Minerals, Mat Sci & Engn Dept, Dhahran 31261, Saudi Arabia
[8] Kyoto Univ, Grad Sch Engn, Dept Mat Chem, Nishikyo Ku, Kyoto 6158520, Japan
关键词
activated carbon; asymmetric supercapacitors; ionic liquid electrolytes; large potential windows; polyaniline; PERFORMANCE; COMPOSITES; NANOFIBERS; TEMPERATURE; BIOMASS; FILMS;
D O I
10.1002/smll.202300258
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A simple and scalable method to fabricate a novel high-energy asymmetric supercapacitor using tomato-leaf-derived hierarchical porous activated carbon (TAC) and electrochemically deposited polyaniline (PANI) for a battery-free heart-pulse-rate monitor is reported. In this study, TAC is prepared by simple pyrolysis, exhibiting nanosheet-type morphology and a high specific surface area of approximate to 1440 m(2) g(-1), and PANI is electrochemically deposited onto carbon cloth. The TAC- and PANI- based asymmetric supercapacitor demonstrates an electrochemical performance superior to that of symmetric supercapacitors, delivering a high specific capacitance of 248 mF cm(-2) at a current density of 1.0 mA cm(-2). The developed asymmetric supercapacitor shows a high energy density of 270 mu Wh cm(-2) at a power density of 1400 mu W cm(-2), as well as an excellent cyclic stability of approximate to 95% capacitance retention after 10 000 charging-discharging cycles while maintaining approximate to 98% Coulombic efficiency. Impressively, the series-connected asymmetric supercapacitors can operate a battery-free heart-pulse-rate monitor extremely efficiently upon solar-panel charging under regular laboratory illumination.
引用
收藏
页数:12
相关论文
共 78 条
[31]   Preparation of electrospun Co3O4 nanofibers as electrode material for high performance asymmetric supercapacitors [J].
Kumar, Manish ;
Subramania, A. ;
Balakrishnan, K. .
ELECTROCHIMICA ACTA, 2014, 149 :152-158
[32]   Biomass-Derived Nitrogen-Doped Carbon Nanofiber Network: A Facile Template for Decoration of Ultrathin Nickel-Cobalt Layered Double Hydroxide Nanosheets as High-Performance Asymmetric Supercapacitor Electrode [J].
Lai, Feili ;
Miao, Yue-E ;
Zuo, Lizeng ;
Lu, Hengyi ;
Huang, Yunpeng ;
Liu, Tianxi .
SMALL, 2016, 12 (24) :3235-3244
[33]   Activated carbon nanotubes/polyaniline composites as supercapacitor electrodes [J].
Lee, Seul-Yi ;
Kim, Ji-Il ;
Park, Soo-Jin .
ENERGY, 2014, 78 :298-303
[34]   Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor [J].
Li, Jun ;
Wang, Xianyou ;
Huang, Qinghua ;
Gamboa, Sergio ;
Sebastian, P. J. .
JOURNAL OF POWER SOURCES, 2006, 158 (01) :784-788
[35]   Three-dimensional graphene/polyaniline composite material for high-performance supercapacitor applications [J].
Liu, Huili ;
Wang, Yi ;
Gou, Xinglong ;
Qi, Tao ;
Yang, Jun ;
Ding, Yulong .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2013, 178 (05) :293-298
[36]   Recent advancements of polyaniline-based nanocomposites for supercapacitors [J].
Liu, Panbo ;
Yan, Jing ;
Guang, Zhaoxu ;
Huang, Ying ;
Li, Xifei ;
Huang, Wenhuan .
JOURNAL OF POWER SOURCES, 2019, 424 :108-130
[37]   Polyaniline and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability [J].
Liu, Tianyu ;
Finn, Lauren ;
Yu, Minghao ;
Wang, Hanyu ;
Zhai, Teng ;
Lu, Xihong ;
Tong, Yexiang ;
Li, Yat .
NANO LETTERS, 2014, 14 (05) :2522-2527
[38]   Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers [J].
Liu, Wenwen ;
Yan, Xingbin ;
Chen, Jiangtao ;
Feng, Yaqiang ;
Xue, Qunji .
NANOSCALE, 2013, 5 (13) :6053-6062
[39]   Renewable biomass-derived carbons for electrochemical capacitor applications [J].
Luo, Xianyou ;
Chen, Shaorui ;
Hu, Tianzhao ;
Chen, Yong ;
Li, Feng .
SUSMAT, 2021, 1 (02) :211-240
[40]   Enhanced electrochemical properties of hierarchically sheath-core aligned carbon nanofibers coated carbon fiber yarn electrode-based supercapacitor via polyaniline nanowire array modification [J].
Mao, Ning ;
Chen, Wenchong ;
Meng, Jie ;
Li, Yueyuan ;
Zhang, Kun ;
Qin, Xiaohong ;
Zhang, Hongnan ;
Zhang, Chuyang ;
Qiu, Yiping ;
Wang, Shiren .
JOURNAL OF POWER SOURCES, 2018, 399 :406-413