EQUIVALENCE ON HIROSHIMA?S TYPE INEQUALITIES FOR POSITIVE SEMIDEFINITE BLOCK MATRICES

被引:0
作者
ZHANG, Y. U. N. [1 ]
ZHANG, H. A. I. B. O. [1 ]
SHI, S. H. U. O. [1 ]
机构
[1] Huaibei Normal Univ, Sch Math Sci, Huaibei 235000, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2023年 / 17卷 / 01期
基金
美国国家科学基金会;
关键词
Positive semidefinite block matrices; eigenvalue inequality; majorization;
D O I
10.7153/jmi-2023-17-23
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that some Hiroshima's type inequalities for positive semidef-inite block matrices are equivalent. These interesting results are due to Hiroshima [Phys. Rev. Lett. 91, (2003), 057902], Lin and Wolkowicz [Linear Multilinear Algebra 60, 11-12 (2012), 1365-1368], Turkmen, Paksoy and Zhang [Linear Algebra Appl. 437, 6 (2012), 1305-1316], Zhang and Xu [J. Math. Inequal. 14, 4 (2020), 1383-1388], respectively.
引用
收藏
页码:341 / 347
页数:7
相关论文
共 13 条
[1]  
Bhatia R., 1997, MATRIX ANAL, DOI [DOI 10.1007/978-1-4612-0653-8, 10.1007/978-1-4612-0653-8]
[3]   Entanglement detection [J].
Guehne, Otfried ;
Toth, Geza .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 474 (1-6) :1-75
[4]   Majorization criterion for distillability of a bipartite quantum state [J].
Hiroshima, T .
PHYSICAL REVIEW LETTERS, 2003, 91 (05) :579021-579024
[5]  
Horn R.A., 2013, Matrix Analysis, V2nd
[6]   Quantum entanglement [J].
Horodecki, Ryszard ;
Horodecki, Pawel ;
Horodecki, Michal ;
Horodecki, Karol .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :865-942
[7]   An eigenvalue majorization inequality for positive semidefinite block matrices [J].
Lin, Minghua ;
Wolkowicz, Henry .
LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (11-12) :1365-1368
[8]  
Marshall AW, 2011, SPRINGER SER STAT, P3, DOI 10.1007/978-0-387-68276-1
[9]   Some inequalities of majorization type [J].
Turkmen, Ramazan ;
Paksoy, Vehbi E. ;
Zhang, Fuzhen .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (06) :1305-1316
[10]  
Zhan Xingzhi., 2013, Matrix theory, V147