Mitigating bias in deep learning for diagnosis of coronary artery disease from myocardial perfusion SPECT images

被引:11
作者
Miller, Robert J. H. [1 ,2 ]
Singh, Ananya [1 ]
Otaki, Yuka [1 ]
Tamarappoo, Balaji K. [1 ]
Kavanagh, Paul [1 ]
Parekh, Tejas [1 ]
Hu, Lien-Hsin [1 ,3 ]
Gransar, Heidi [1 ]
Sharir, Tali [4 ,5 ]
Einstein, Andrew J. [6 ,7 ,8 ]
Fish, Mathews B. [9 ]
Ruddy, Terrence D. [10 ]
Kaufmann, Philipp A. [11 ]
Sinusas, Albert J. [12 ]
Miller, Edward J. [12 ]
Bateman, Timothy M. [13 ]
Dorbala, Sharmila [14 ]
Di Carli, Marcelo F. [14 ]
Liang, Joanna X. [1 ]
Dey, Damini [1 ]
Berman, Daniel S. [1 ]
Slomka, Piotr J. [1 ]
机构
[1] Cedars Sinai Med Ctr, Div Artificial Intelligence Imaging & Biomed Sci, Dept Med, 8700 Beverly Blvd,Ste Metro 203, Los Angeles, CA 90048 USA
[2] Univ Calgary, Dept Cardiac Sci, Calgary, AB, Canada
[3] Taipei Vet Gen Hosp, Dept Nucl Med, Taipei, Taiwan
[4] Assuta Med Ctr, Dept Nucl Cardiol, Tel Aviv, Israel
[5] Ben Gurion Univ Negev, Beer Sheva, Israel
[6] Columbia Univ, Dept Med, Irving Med Ctr, New York, NY USA
[7] Columbia Univ, Div Cardiol, Irving Med Ctr, Dept Radiol, New York, NY USA
[8] New York Presbyterian Hosp, New York, NY USA
[9] Sacred Heart Med Ctr, Oregon Heart & Vasc Inst, Springfield, OR USA
[10] Univ Ottawa, Div Cardiol, Heart Inst, Ottawa, ON, Canada
[11] Univ Hosp Zurich, Dept Nucl Med, Cardiac Imaging, Zurich, Switzerland
[12] Yale Univ, Sch Med, Dept Internal Med, Sect Cardiovasc Med, New Haven, CT 06510 USA
[13] Cardiovasc Imaging Technol LLC, Kansas City, MO USA
[14] Brigham & Womens Hosp, Dept Radiol, Div Nucl Med & Mol Imaging, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
Deep learning; Model training; Calibration; Diagnostic accuracy; Sex-specific analysis; GENDER-DIFFERENCES;
D O I
10.1007/s00259-022-05972-w
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose Artificial intelligence (AI) has high diagnostic accuracy for coronary artery disease (CAD) from myocardial perfusion imaging (MPI). However, when trained using high-risk populations (such as patients with correlating invasive testing), the disease probability can be overestimated due to selection bias. We evaluated different strategies for training AI models to improve the calibration (accurate estimate of disease probability), using external testing. Methods Deep learning was trained using 828 patients from 3 sites, with MPI and invasive angiography within 6 months. Perfusion was assessed using upright (U-TPD) and supine total perfusion deficit (S-TPD). AI training without data augmentation (model 1) was compared to training with augmentation (increased sampling) of patients without obstructive CAD (model 2), and patients without CAD and TPD < 2% (model 3). All models were tested in an external population of patients with invasive angiography within 6 months (n = 332) or low likelihood of CAD (n = 179). Results Model 3 achieved the best calibration (Brier score 0.104 vs 0.121, p < 0.01). Improvement in calibration was particularly evident in women (Brier score 0.084 vs 0.124, p < 0.01). In external testing (n = 511), the area under the receiver operating characteristic curve (AUC) was higher for model 3 (0.930), compared to U-TPD (AUC 0.897) and S-TPD (AUC 0.900, p < 0.01 for both). Conclusion Training AI models with augmentation of low-risk patients can improve calibration of AI models developed to identify patients with CAD, allowing more accurate assignment of disease probability. This is particularly important in lower-risk populations and in women, where overestimation of disease probability could significantly influence down-stream patient management.
引用
收藏
页码:387 / 397
页数:11
相关论文
共 29 条
[11]   THE MEANING AND USE OF THE AREA UNDER A RECEIVER OPERATING CHARACTERISTIC (ROC) CURVE [J].
HANLEY, JA ;
MCNEIL, BJ .
RADIOLOGY, 1982, 143 (01) :29-36
[12]   Upper reference limits of transient ischemic dilation ratio for different protocols on new-generation cadmium zinc telluride cameras: A report from REFINE SPECT registry [J].
Hu, Lien-Hsin ;
Sharir, Tali ;
Miller, Robert J. H. ;
Einstein, Andrew J. ;
Fish, Mathews B. ;
Ruddy, Terrence D. ;
Dorbala, Sharmila ;
Di Carli, Marcelo ;
Kaufmann, Philipp A. ;
Sinusas, Albert J. ;
Miller, Edward J. ;
Bateman, Timothy M. ;
Betancur, Julian ;
Germano, Guido ;
Liang, Joanna X. ;
Commandeur, Frederic ;
Azadani, Peyman N. ;
Gransar, Heidi ;
Otaki, Yuka ;
Tamarappoo, Balaji K. ;
Dey, Damini ;
Berman, Daniel S. ;
Slomka, Piotr J. .
JOURNAL OF NUCLEAR CARDIOLOGY, 2020, 27 (04) :1180-1189
[13]   Gender differences in the diagnostic accuracy of SPECT myocardial perfusion imaging: A bivariate meta-analysis [J].
Iskandar, Aline ;
Limone, Brendan ;
Parker, Matthew W. ;
Perugini, Andrew ;
Kim, Hyejin ;
Jones, Charles ;
Calamari, Brian ;
Coleman, Craig I. ;
Heller, Gary V. .
JOURNAL OF NUCLEAR CARDIOLOGY, 2013, 20 (01) :53-63
[14]   2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC) [J].
Knuuti, Juhani ;
Wijns, William ;
Saraste, Antti ;
Capodanno, Davide ;
Barbato, Emanuele ;
Funck-Brentano, Christian ;
Prescott, Eva ;
Storey, Robert F. ;
Deaton, Christi ;
Cuisset, Thomas ;
Agewall, Stefan ;
Dickstein, Kenneth ;
Edvardsen, Thor ;
Escaned, Javier ;
Gersh, Bernard J. ;
Svitil, Pavel ;
Gilard, Martine ;
Hasdai, David ;
Hatala, Robert ;
Mahfoud, Felix ;
Masip, Josep ;
Muneretto, Claudio ;
Valgimigli, Marco ;
Achenbach, Stephan ;
Bax, Jeroen J. ;
Neumann, Franz-Josef ;
Sechtem, Udo ;
Banning, Adrian Paul ;
Bonaros, Nikolaos ;
Bueno, Hector ;
Bugiardini, Raffaele ;
Chieffo, Alaide ;
Crea, Filippo ;
Czerny, Martin ;
Delgado, Victoria ;
Dendale, Paul .
EUROPEAN HEART JOURNAL, 2020, 41 (03) :407-477
[15]   Sex Differences in Modifiable Risk Factors and Severity of Coronary Artery Disease [J].
Manfrini, Olivia ;
Yoon, Jinsung ;
van der Schaar, Mihaela ;
Kedev, Sasko ;
Vavlukis, Marija ;
Stankovic, Goran ;
Scarpone, Marialuisa ;
Milicic, Davor ;
Vasiljevic, Zorana ;
Badimon, Lina ;
Cenko, Edina ;
Bugiardini, Raffaele .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2020, 9 (19)
[16]   Explainable Deep Learning Improves Physician Interpretation of Myocardial Perfusion Imaging [J].
Miller, Robert J. H. ;
Kuronuma, Keiichiro ;
Singh, Ananya ;
Otaki, Yuka ;
Hayes, Sean ;
Chareonthaitawee, Panithaya ;
Kavanagh, Paul ;
Parekh, Tejas ;
Tamarappoo, Balaji K. ;
Sharir, Tali ;
Einstein, Andrew J. ;
Fish, Mathews B. ;
Ruddy, Terrence D. ;
Kaufmann, Philipp A. ;
Sinusas, Albert J. ;
Miller, Edward J. ;
Bateman, Timothy M. ;
Dorbala, Sharmila ;
Di Carli, Marcelo ;
Cadet, Sebastien ;
Liang, Joanna X. ;
Dey, Damini ;
Berman, Daniel S. ;
Slomka, Piotr J. .
JOURNAL OF NUCLEAR MEDICINE, 2022, 63 (11) :1768-1774
[17]   Prognostic significance of previous myocardial infarction and previous revascularization in patients undergoing SPECT MPI [J].
Miller, Robert J. H. ;
Klein, Eyal ;
Gransar, Heidi ;
Slomka, Piotr J. ;
Friedman, John D. ;
Hayes, Sean ;
Thomson, Louise ;
Tamarappoo, Balaji ;
Rozanski, Alan ;
Berman, Daniel S. .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2020, 313 :9-15
[18]   Prediction error estimation: a comparison of resampling methods [J].
Molinaro, AM ;
Simon, R ;
Pfeiffer, RM .
BIOINFORMATICS, 2005, 21 (15) :3301-3307
[19]   Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016 [J].
Naghavi, Mohsen ;
Abajobir, Amanuel Alemu ;
Abbafati, Cristiana ;
Abbas, Kaja M. ;
Abd-Allah, Foad ;
Abera, Semaw Ferede ;
Aboyans, Victor ;
Adetokunboh, Olatunji ;
Arnlov, Johan ;
Afshin, Ashkan ;
Agrawal, Anurag ;
Kiadaliri, Aliasghar Ahmad ;
Ahmadi, Alireza ;
Ahmed, Muktar Beshir ;
Aichour, Amani Nidhal ;
Aichour, Ibtihel ;
Aichour, Miloud Taki Eddine ;
Aiyar, Sneha ;
Al-Eyadhy, Ayman ;
Alahdab, Fares ;
Al-Aly, Ziyad ;
Alam, Khurshid ;
Alam, Noore ;
Alam, Tahiya ;
Alene, Kefyalew Addis ;
Ali, Syed Danish ;
Alizadeh-Navaei, Reza ;
Alkaabi, Juma M. ;
Alkerwi, Ala'a ;
Alla, Francois ;
Allebeck, Peter ;
Allen, Christine ;
Al-Raddadi, Rajaa ;
Alsharif, Ubai ;
Altirkawi, Khalid A. ;
Alvis-Guzman, Nelson ;
Amare, Azmeraw T. ;
Amini, Erfan ;
Ammar, Walid ;
Amoako, Yaw Ampem ;
Anber, Nahla ;
Andersen, Hjalte H. ;
Andrei, Catalina Liliana ;
Androudi, Sofia ;
Ansari, Hossein ;
Antonio, Carl Abelardo T. ;
Anwari, Palwasha ;
Arora, Megha ;
Artaman, Al ;
Aryal, Krishna Kumar .
LANCET, 2017, 390 (10100) :1151-1210
[20]   Clinical Deployment of Explainable Artificial Intelligence of SPECT for Diagnosis of Coronary Artery Disease [J].
Otaki, Yuka ;
Singh, Ananya ;
Kavanagh, Paul ;
Miller, Robert J. H. ;
Parekh, Tejas ;
Tamarappoo, Balaji K. ;
Sharir, Tali ;
Einstein, Andrew J. ;
Fish, Mathews B. ;
Ruddy, Terrence D. ;
Kaufmann, Philipp A. ;
Sinusas, Albert J. ;
Miller, Edward J. ;
Bateman, Timothy M. ;
Dorbala, Sharmila ;
Di Carli, Marcelo ;
Cadet, Sebastien ;
Liang, Joanna X. ;
Dey, Damini ;
Berman, Daniel S. ;
Slomka, Piotr J. .
JACC-CARDIOVASCULAR IMAGING, 2022, 15 (06) :1091-1102