Mitigating bias in deep learning for diagnosis of coronary artery disease from myocardial perfusion SPECT images

被引:11
作者
Miller, Robert J. H. [1 ,2 ]
Singh, Ananya [1 ]
Otaki, Yuka [1 ]
Tamarappoo, Balaji K. [1 ]
Kavanagh, Paul [1 ]
Parekh, Tejas [1 ]
Hu, Lien-Hsin [1 ,3 ]
Gransar, Heidi [1 ]
Sharir, Tali [4 ,5 ]
Einstein, Andrew J. [6 ,7 ,8 ]
Fish, Mathews B. [9 ]
Ruddy, Terrence D. [10 ]
Kaufmann, Philipp A. [11 ]
Sinusas, Albert J. [12 ]
Miller, Edward J. [12 ]
Bateman, Timothy M. [13 ]
Dorbala, Sharmila [14 ]
Di Carli, Marcelo F. [14 ]
Liang, Joanna X. [1 ]
Dey, Damini [1 ]
Berman, Daniel S. [1 ]
Slomka, Piotr J. [1 ]
机构
[1] Cedars Sinai Med Ctr, Div Artificial Intelligence Imaging & Biomed Sci, Dept Med, 8700 Beverly Blvd,Ste Metro 203, Los Angeles, CA 90048 USA
[2] Univ Calgary, Dept Cardiac Sci, Calgary, AB, Canada
[3] Taipei Vet Gen Hosp, Dept Nucl Med, Taipei, Taiwan
[4] Assuta Med Ctr, Dept Nucl Cardiol, Tel Aviv, Israel
[5] Ben Gurion Univ Negev, Beer Sheva, Israel
[6] Columbia Univ, Dept Med, Irving Med Ctr, New York, NY USA
[7] Columbia Univ, Div Cardiol, Irving Med Ctr, Dept Radiol, New York, NY USA
[8] New York Presbyterian Hosp, New York, NY USA
[9] Sacred Heart Med Ctr, Oregon Heart & Vasc Inst, Springfield, OR USA
[10] Univ Ottawa, Div Cardiol, Heart Inst, Ottawa, ON, Canada
[11] Univ Hosp Zurich, Dept Nucl Med, Cardiac Imaging, Zurich, Switzerland
[12] Yale Univ, Sch Med, Dept Internal Med, Sect Cardiovasc Med, New Haven, CT 06510 USA
[13] Cardiovasc Imaging Technol LLC, Kansas City, MO USA
[14] Brigham & Womens Hosp, Dept Radiol, Div Nucl Med & Mol Imaging, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
Deep learning; Model training; Calibration; Diagnostic accuracy; Sex-specific analysis; GENDER-DIFFERENCES;
D O I
10.1007/s00259-022-05972-w
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose Artificial intelligence (AI) has high diagnostic accuracy for coronary artery disease (CAD) from myocardial perfusion imaging (MPI). However, when trained using high-risk populations (such as patients with correlating invasive testing), the disease probability can be overestimated due to selection bias. We evaluated different strategies for training AI models to improve the calibration (accurate estimate of disease probability), using external testing. Methods Deep learning was trained using 828 patients from 3 sites, with MPI and invasive angiography within 6 months. Perfusion was assessed using upright (U-TPD) and supine total perfusion deficit (S-TPD). AI training without data augmentation (model 1) was compared to training with augmentation (increased sampling) of patients without obstructive CAD (model 2), and patients without CAD and TPD < 2% (model 3). All models were tested in an external population of patients with invasive angiography within 6 months (n = 332) or low likelihood of CAD (n = 179). Results Model 3 achieved the best calibration (Brier score 0.104 vs 0.121, p < 0.01). Improvement in calibration was particularly evident in women (Brier score 0.084 vs 0.124, p < 0.01). In external testing (n = 511), the area under the receiver operating characteristic curve (AUC) was higher for model 3 (0.930), compared to U-TPD (AUC 0.897) and S-TPD (AUC 0.900, p < 0.01 for both). Conclusion Training AI models with augmentation of low-risk patients can improve calibration of AI models developed to identify patients with CAD, allowing more accurate assignment of disease probability. This is particularly important in lower-risk populations and in women, where overestimation of disease probability could significantly influence down-stream patient management.
引用
收藏
页码:387 / 397
页数:11
相关论文
共 29 条
[1]  
Apostolopoulos ID, 2020, HELL J NUCL MED, V23, P125, DOI 10.1967/s002449912101
[2]   Comparison of Fully Automated Computer Analysis and Visual Scoring for Detection of Coronary Artery Disease from Myocardial Perfusion SPECT in a Large Population [J].
Arsanjani, Reza ;
Xu, Yuan ;
Hayes, Sean W. ;
Fish, Mathews ;
Lemley, Mark, Jr. ;
Gerlach, James ;
Dorbala, Sharmila ;
Berman, Daniel S. ;
Germano, Guido ;
Slomka, Piotr .
JOURNAL OF NUCLEAR MEDICINE, 2013, 54 (02) :221-228
[3]   Deep Learning Analysis of Upright-Supine High-Efficiency SPECT Myocardial Perfusion Imaging for Prediction of Obstructive Coronary Artery Disease: A Multicenter Study [J].
Betancur, Julian ;
Hu, Lien-Hsin ;
Commandeur, Frederic ;
Sharir, Tali ;
Einstein, Andrew J. ;
Fish, Mathews B. ;
Ruddy, Terrence D. ;
Kaufmann, Philipp A. ;
Sinusas, Albert J. ;
Miller, Edward J. ;
Bateman, Timothy M. ;
Dorbala, Sharmila ;
Di Carli, Marcelo ;
Germano, Guido ;
Otaki, Yuka ;
Liang, Joanna X. ;
Tamarappoo, Balaji K. ;
Dey, Damini ;
Berman, Daniel S. ;
Slomka, Piotr J. .
JOURNAL OF NUCLEAR MEDICINE, 2019, 60 (05) :664-670
[4]   Deep Learning for Prediction of Obstructive Disease From Fast Myocardial Perfusion SPECT A Multicenter Study [J].
Betancur, Julian ;
Commandeur, Frederic ;
Motlagh, Mahsaw ;
Sharir, Tali ;
Einstein, Andrew J. ;
Bokhari, Sabahat ;
Fish, Mathews B. ;
Ruddy, Terrence D. ;
Kaufmann, Philipp ;
Sinusas, Albert J. ;
Miller, Edward J. ;
Bateman, Timothy M. ;
Dorbala, Sharmila ;
Di Carli, Marcelo ;
Germano, Guido ;
Otaki, Yuka ;
Tamarappoo, Balaji K. ;
Dey, Damini ;
Berman, Daniel S. ;
Slomka, Piotr J. .
JACC-CARDIOVASCULAR IMAGING, 2018, 11 (11) :1654-1663
[5]   Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart - A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association [J].
Cerqueira, MD ;
Weissman, NJ ;
Dilsizian, V ;
Jacobs, AK ;
Kaul, S ;
Laskey, WK ;
Pennell, DJ ;
Rumberger, JA ;
Ryan, T ;
Verani, MS .
CIRCULATION, 2002, 105 (04) :539-542
[6]   ANALYSIS OF PROBABILITY AS AN AID IN THE CLINICAL-DIAGNOSIS OF CORONARY-ARTERY DISEASE [J].
DIAMOND, GA ;
FORRESTER, JS .
NEW ENGLAND JOURNAL OF MEDICINE, 1979, 300 (24) :1350-1358
[7]   Single Photon Emission Computed Tomography (SPECT) Myocardial Perfusion Imaging Guidelines: Instrumentation, Acquisition, Processing, and Interpretation [J].
Dorbala, Sharmila ;
Ananthasubramaniam, Karthik ;
Armstrong, Ian S. ;
Chareonthaitawee, Panithaya ;
DePuey, E. Gordon ;
Einstein, Andrew J. ;
Gropler, Robert J. ;
Holly, Thomas A. ;
Mahmarian, John J. ;
Park, Mi-Ae ;
Polk, Donna M. ;
Russell, Raymond, III ;
Slomka, Piotr J. ;
Thompson, Randall C. ;
Wells, R. Glenn .
JOURNAL OF NUCLEAR CARDIOLOGY, 2018, 25 (05) :1784-1846
[8]   Comparing Probabilistic forecasting systems with the brier score [J].
Ferro, Christopher A. T. .
WEATHER AND FORECASTING, 2007, 22 (05) :1076-1088
[9]   A Novel High-Sensitivity Rapid-Acquisition Single-Photon Cardiac Imaging Camera [J].
Gambhir, Sanjiv S. ;
Berman, Daniel S. ;
Ziffer, Jack ;
Nagler, Michael ;
Sandler, Martin ;
Patton, Jim ;
Hutton, Brian ;
Sharir, Tali ;
Ben Haim, Shlomo ;
Ben Haim, Simona .
JOURNAL OF NUCLEAR MEDICINE, 2009, 50 (04) :635-643
[10]   Gender differences in the evaluation of coronary artery disease with a cadmium-zinc telluride camera [J].
Gimelli, Alessia ;
Bottai, Matteo ;
Quaranta, Angela ;
Giorgetti, Assuero ;
Genovesi, Dario ;
Marzullo, Paolo .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2013, 40 (10) :1542-1548