Steady-state solutions for the Muskat problem

被引:0
作者
Sanchez, Omar [1 ]
机构
[1] Univ Autonoma Madrid, Inst Ciencias Matemat, Madrid, Spain
基金
欧洲研究理事会;
关键词
Muskat problem; Fingering patterns; Steady state solutions; Periodic solution; POROUS-MEDIA; HELE-SHAW; INTERFACE EVOLUTION; POSEDNESS; EXISTENCE; FLOWS;
D O I
10.1007/s13348-021-00348-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the existence of stationary solutions for the Muskat problem with a large surface tension coefficient. Ehrnstrom, Escher and Matioc studied in Mats Ehrnstrom (Methods Appl Anal 20:33-46, 2013) that there exists solutions to this problem for surface tensions below a finite value. In these notes we go beyond this value considering large surface tension. Also by numerical simulation we show some examples that explains the behavior of solutions.
引用
收藏
页码:313 / 321
页数:9
相关论文
共 23 条
[1]   The Zero Surface Tension Limit of Two-Dimensional Interfacial Darcy Flow [J].
Ambrose, David M. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2014, 16 (01) :105-143
[2]   POROUS MEDIA: THE MUSKAT PROBLEM IN THREE DIMENSIONS [J].
Cordoba, Antonio ;
Cordoba, Diego ;
Gancedo, Francisco .
ANALYSIS & PDE, 2013, 6 (02) :447-497
[3]   Interface evolution: the Hele-Shaw and Muskat problems [J].
Cordoba, Antonio ;
Cordoba, Diego ;
Gancedo, Francisco .
ANNALS OF MATHEMATICS, 2011, 173 (01) :477-542
[4]   Contour dynamics of incompressible 3-d fluids in a porous medium with different densities [J].
Cordoba, Diego ;
Gancedo, Francisco .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 273 (02) :445-471
[5]   The Euler equations as a differential inclusion [J].
De Lellis, Camillo ;
Szekelyhidi, Laszlo, Jr. .
ANNALS OF MATHEMATICS, 2009, 170 (03) :1417-1436
[6]   On Admissibility Criteria for Weak Solutions of the Euler Equations [J].
De Lellis, Camillo ;
Szekelyhidi, Laszlo, Jr. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 195 (01) :225-260
[7]  
DUCHON J, 1984, ANN I H POINCARE-AN, V1, P361
[8]  
Ehrnström M, 2013, METHODS APPL ANAL, V20, P33
[9]   Classical solutions of multidimensional Hele-Shaw models [J].
Escher, J ;
Simonett, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (05) :1028-1047
[10]   the Parabolicity of the Muskat Problem: Well-Posedness, Fingering, and Stability Results [J].
Escher, Joachim ;
Matioc, Bogdan-Vasile .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2011, 30 (02) :193-218