Breviscapine protects against pathological cardiac hypertrophy by targeting FOXO3a-mitofusin-1 mediated mitochondrial fusion

被引:2
作者
Lin, Xiaobing [1 ]
Fei, Ming-Zhou [1 ]
Huang, An-Xian [1 ]
Yang, Liu [1 ]
Zeng, Ze-Jie [1 ]
Gao, Wen [1 ]
机构
[1] China Pharmaceut Univ, Sch Tradit Chinese Pharm, State Key Lab Nat Med, Nanjing 211198, Peoples R China
基金
中国国家自然科学基金;
关键词
Breviscapine; Heart failure; Myocardial remodeling; Mitochondrial fusion; Forkhead box O3a; Mitofusin-1; FOXO TRANSCRIPTION FACTORS; OXIDATIVE STRESS; SCUTELLARIN; DYSFUNCTION; APOPTOSIS; AUTOPHAGY; RATS; FRAGMENTATION; FIBROBLASTS; EXPRESSION;
D O I
10.1016/j.freeradbiomed.2024.01.007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Forkhead box O3a (FOXO3a)-mediated mitochondrial dysfunction plays a pivotal effect on cardiac hypertrophy and heart failure (HF). However, the role and underlying mechanisms of FOXO3a, regulated by breviscapine (BRE), on mitochondrial function in HF therapy remain unclear. This study reveals that BRE-induced nuclear translocation of FOXO3a facilitates mitofusin-1 (MFN-1)-dependent mitochondrial fusion in cardiac hypertrophy and HF. BRE effectively promotes cardiac function and ameliorates cardiac remodeling in pressure overloadinduced mice. In addition, BRE mitigates phenylephrine (PE)-induced cardiac hypertrophy in cardiomyocytes and fibrosis remodeling in fibroblasts by inhibiting ROS production and promoting mitochondrial fusion, respectively. Transcriptomics analysis underscores the close association between the FOXO pathway and the protective effect of BRE against HF, with FOXO3a emerging as a potential target of BRE. BRE potentiates the nuclear translocation of FOXO3a by attenuating its phosphorylation, other than its acetylation in cardiac hypertrophy. Mechanistically, over-expression of FOXO3a significantly inhibits cardiac hypertrophy and mitochondrial injury by promoting MFN-1-mediated mitochondrial fusion. Furthermore, BRE demonstrates its ability to substantially curb cardiac hypertrophy, reduce mitochondrial ROS production, and enhance MFN-1-mediated mitochondrial fusion through a FOXO3a-dependent mechanism. In conclusion, nuclear FOXO3a translocation induced by BRE presents a successful therapeutic avenue for addressing cardiac hypertrophy and HF through promoting MFN-1-dependent mitochondrial fusion.
引用
收藏
页码:477 / 492
页数:16
相关论文
共 22 条
  • [21] Histone H4R3 symmetric di-methylation by Prmt5 protects against cardiac hypertrophy via regulation of Filip1L/β-catenin
    Cai, Sidong
    Wang, Panxia
    Xie, Tingting
    Li, Zhenzhen
    Li, Jingyan
    Lan, Rui
    Ding, Yanqing
    Lu, Jing
    Ye, Jiantao
    Wang, Junjian
    Li, Zhuoming
    Liu, Peiqing
    PHARMACOLOGICAL RESEARCH, 2020, 161
  • [22] Astragaloside IV Inhibits NLRP3 Inflammasome-Mediated Pyroptosis via Activation of Nrf-2/HO-1 Signaling Pathway and Protects against Doxorubicin-Induced Cardiac Dysfunction
    Chen, Xueheng
    Tian, Chao
    Zhang, Zhiqiang
    Qin, Yiran
    Meng, Runqi
    Dai, Xuening
    Zhong, Yuanyuan
    Wei, Xiqing
    Zhang, Jinguo
    Shen, Cheng
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2023, 28 (03):