Meridional Heat Transport in the DeepMIP Eocene Ensemble: Non-CO2 and CO2 Effects

被引:4
|
作者
Kelemen, Fanni Dora [1 ]
Steinig, Sebastian [2 ]
de Boer, Agatha [3 ]
Zhu, Jiang [4 ]
Chan, Wing-Le [5 ,6 ]
Niezgodzki, Igor [7 ,8 ]
Hutchinson, David K. [9 ]
Knorr, Gregor [8 ]
Abe-Ouchi, Ayako [5 ]
Ahrens, Bodo [1 ]
机构
[1] Goethe Univ Frankfurt, Inst Atmospher & Environm Sci, Frankfurt, Germany
[2] Univ Bristol, Sch Geog Sci, Bristol, England
[3] Stockholm Univ, Bolin Ctr Climate Res, Dept Geol Sci, Stockholm, Sweden
[4] Natl Ctr Atmospher Res, Climate & Global Dynam Lab, Boulder, CO USA
[5] Univ Tokyo, AORI, Kashiwa, Japan
[6] JAMSTEC, Res Ctr Environm Modeling & Applicat, Yokohama, Japan
[7] Polish Acad Sci, Res Ctr Krakow, Biogeosyst Modelling Grp, ING PAN Inst Geol Sci, Senacka 1, PL-31002 Krakow, Poland
[8] Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Bremerhaven, Germany
[9] Univ New South Wales Sydney, Climate Change Res Ctr, Sydney, NSW, Australia
基金
瑞典研究理事会; 澳大利亚研究理事会; 美国国家科学基金会;
关键词
meridional heat transport; early Eocene climatic optimum; paleoclimate; monsoon; CO2; effect; DeepMIP; OCEAN CIRCULATION; CLIMATE MODELS; SIMULATIONS; ASYMMETRY; MONSOONS; ENERGY; EECO;
D O I
10.1029/2022PA004607
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The total meridional heat transport (MHT) is relatively stable across different climates. Nevertheless, the strength of individual processes contributing to the total transport are not stable. Here we investigate the MHT and its main components especially in the atmosphere, in five coupled climate model simulations from the Deep-Time Model Intercomparison Project (DeepMIP). These simulations target the early Eocene climatic optimum, a geological time period with high CO2 concentrations, analog to the upper range of end-of-century CO2 projections. Preindustrial and early Eocene simulations, at a range of CO2 levels are used to quantify the MHT changes in response to both CO2 and non-CO2 related forcings. We found that atmospheric poleward heat transport increases with CO2 , while oceanic poleward heat transport decreases. The non-CO2 boundary conditions cause more MHT toward the South Pole, mainly through an increase in the southward oceanic heat transport. The changes in paleogeography increase the heat transport via transient eddies at the northern mid-latitudes in the Eocene. The Eocene Hadley cells do not transport more heat poleward, but due to the warmer atmosphere, especially the northern cell, circulate more heat in the tropics, than today. The monsoon systems' poleward latent heat transport increases with rising CO2 concentrations, but this change is counterweighted by the globally smaller Eocene monsoon area. Our results show that the changes in the monsoon systems' latent heat transport is a robust feature of CO2 warming, which is in line with the currently observed precipitation increase of present day monsoon systems.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Abating CO2 and non-CO2 emissions with hydrogen propulsion
    Mourouzidis, C.
    Singh, G.
    Sun, X.
    Huete, J.
    Nalianda, D.
    Nikolaidis, T.
    Sethi, V.
    Rolt, A.
    Goodger, E.
    Pilidis, P.
    AERONAUTICAL JOURNAL, 2024, 128 (1325) : 1576 - 1593
  • [2] A Comparative Perspective of the Effects of CO2 and Non-CO2 Greenhouse Gas Emissions on Global Solar, Wind, and Geothermal Energy Investment
    Ghezelbash, Azam
    Khaligh, Vahid
    Fahimifard, Seyed Hamed
    Liu, J. Jay
    ENERGIES, 2023, 16 (07)
  • [3] Effects of CO2 on polymeric materials in the CO2 transport chain: A review
    Ansaloni, Luca
    Alcock, Ben
    Peters, Thijs A.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2020, 94
  • [4] CO2 Transport - Depressurization, Heat Transfer and Impurities
    de Koeijer, Gelein
    Borch, Jan Henrik
    Drescher, Michael
    Li, Hailong
    Wilhelmsen, Oivind
    Jakobsen, Jana
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 3008 - 3015
  • [5] The Partitioning of Meridional Heat Transport from the Last Glacial Maximum to CO2 Quadrupling in Coupled Climate Models
    Donohoe, Aaron
    Armour, Kyle C.
    Roe, Gerard H.
    Battisti, David S.
    Hahn, Lily
    JOURNAL OF CLIMATE, 2020, 33 (10) : 4141 - 4165
  • [6] Quantifying non-CO2 contributions to remaining carbon budgets
    Jenkins, Stuart
    Cain, Michelle
    Friedlingstein, Pierre
    Gillett, Nathan
    Walsh, Tristram
    Allen, Myles R.
    NPJ CLIMATE AND ATMOSPHERIC SCIENCE, 2021, 4 (01)
  • [7] Increased CO2 emissions surpass reductions of non-CO2 emissions more under higher experimental warming in an alpine meadow
    Wang, Jinsong
    Quan, Quan
    Chen, Weinan
    Tian, Dashuan
    Ciais, Philippe
    Crowther, Thomas W.
    Mack, Michelle C.
    Poulter, Benjamin
    Tian, Hanqin
    Luo, Yiqi
    Wen, Xuefa
    Yu, Guirui
    Niu, Shuli
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 769
  • [8] CO2 Capture and Transport
    Rubin, Edward S.
    ELEMENTS, 2008, 4 (05) : 311 - 317
  • [9] IGCC Precombustion CO2 Capture Using K2CO3 Solvent and Utilizing the Intercooling Heat Recovered From CO2 Compressors for CO2 Regeneration
    Li, Sheng
    Jin, Hongguang
    Mumford, Kathryn Anne
    Smith, Kathryn
    Stevens, Geoff
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2015, 137 (04):
  • [10] Non-CO2 emissions embodied in trade of Danish pork
    Caro, Dario
    Mikkelsen, Mette Hjorth
    Thomsen, Marianne
    CARBON MANAGEMENT, 2019, 10 (03) : 323 - 331