Emerging field: O-GlcNAcylation in ferroptosis

被引:18
作者
Zhang, Hongshuo [1 ]
Zhang, Juan [2 ]
Dong, Haojie [2 ]
Kong, Ying [2 ]
Guan, Youfei [1 ]
机构
[1] Dalian Med Univ, Adv Inst Med Sci, Dalian, Peoples R China
[2] Dalian Med Univ, Coll Basic Med Sci, Dept Biochem & Mol Biol, Dalian, Peoples R China
基金
中国国家自然科学基金;
关键词
ferroptosis; O-GlcNAcylation; ROS biology; iron metabolism; lipid peroxidation; subcellular organelle; GLCNAC TRANSFERASE; CELL-DEATH; LIPID-PEROXIDATION; UP-REGULATION; MITOCHONDRIAL; METABOLISM; MECHANISMS; GLYCOSYLATION; DEGRADATION; SENSITIVITY;
D O I
10.3389/fmolb.2023.1203269
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In 2012, researchers proposed a non-apoptotic, iron-dependent form of cell death caused by lipid peroxidation called ferroptosis. During the past decade, a comprehensive understanding of ferroptosis has emerged. Ferroptosis is closely associated with the tumor microenvironment, cancer, immunity, aging, and tissue damage. Its mechanism is precisely regulated at the epigenetic, transcriptional, and post-translational levels. O-GlcNAc modification (O-GlcNAcylation) is one of the post-translational modifications of proteins. Cells can modulate cell survival in response to stress stimuli, including apoptosis, necrosis, and autophagy, through adaptive regulation by O-GlcNAcylation. However, the function and mechanism of these modifications in regulating ferroptosis are only beginning to be understood. Here, we review the relevant literature within the last 5 years and present the current understanding of the regulatory function of O-GlcNAcylation in ferroptosis and the potential mechanisms that may be involved, including antioxidant defense system-controlled reactive oxygen species biology, iron metabolism, and membrane lipid peroxidation metabolism. In addition to these three areas of ferroptosis research, we examine how changes in the morphology and function of subcellular organelles (e.g., mitochondria and endoplasmic reticulum) involved in O-GlcNAcylation may trigger and amplify ferroptosis. We have dissected the role of O-GlcNAcylation in regulating ferroptosis and hope that our introduction will provide a general framework for those interested in this field.
引用
收藏
页数:15
相关论文
共 116 条
[1]   Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice [J].
Angeli, Jose Pedro Friedmann ;
Schneider, Manuela ;
Proneth, Bettina ;
Tyurina, Yulia Y. ;
Tyurin, Vladimir A. ;
Hammond, Victoria J. ;
Herbach, Nadja ;
Aichler, Michaela ;
Walch, Axel ;
Eggenhofer, Elke ;
Basavarajappa, Devaraj ;
Radmark, Olof ;
Kobayashi, Sho ;
Seibt, Tobias ;
Beck, Heike ;
Neff, Frauke ;
Esposito, Irene ;
Wanke, Ruediger ;
Foerster, Heidi ;
Yefremova, Olena ;
Heinrichmeyer, Marc ;
Bornkamm, Georg W. ;
Geissler, Edward K. ;
Thomas, Stephen B. ;
Stockwell, Brent R. ;
O'Donnell, Valerie B. ;
Kagan, Valerian E. ;
Schick, Joel A. ;
Conrad, Marcus .
NATURE CELL BIOLOGY, 2014, 16 (12) :1180-U120
[2]   Lipid storage and lipophagy regulates ferroptosis [J].
Bai, Yuansong ;
Meng, Lingjun ;
Han, Leng ;
Jia, Yuanyuan ;
Zhao, Yanan ;
Gao, Huan ;
Kang, Rui ;
Wang, Xiaofeng ;
Tang, Daolin ;
Dai, Enyong .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2019, 508 (04) :997-1003
[3]   The Nutrient-Dependent O-GIcNAc Modification Controls the Expression of Liver Fatty Acid Synthase [J].
Baldini, Steffi F. ;
Wavelet, Cindy ;
Hainault, Isabelle ;
Guinez, Celine ;
Lefebvre, Tony .
JOURNAL OF MOLECULAR BIOLOGY, 2016, 428 (16) :3295-3304
[4]   Ferroptotic cell death triggered by conjugated linolenic acids is mediated by ACSL1 [J].
Beatty, Alexander ;
Singh, Tanu ;
Tyurina, Yulia Y. ;
Tyurin, Vladimir A. ;
Samovich, Svetlana ;
Nicolas, Emmanuelle ;
Maslar, Kristen ;
Zhou, Yan ;
Cai, Kathy Q. ;
Tan, Yinfei ;
Doll, Sebastian ;
Conrad, Marcus ;
Subramanian, Aravind ;
Kagan, Valerian E. ;
Rennefahrt, Ulrike ;
Peterson, Jeffrey R. ;
Bayir, Hulya .
NATURE COMMUNICATIONS, 2021, 12 (01)
[5]   The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis [J].
Bersuker, Kirill ;
Hendricks, Joseph M. ;
Li, Zhipeng ;
Magtanong, Leslie ;
Ford, Breanna ;
Tang, Peter H. ;
Roberts, Melissa A. ;
Tong, Bingqi ;
Maimone, Thomas J. ;
Zoncu, Roberto ;
Bassik, Michael C. ;
Nomura, Daniel K. ;
Dixon, Scott J. ;
Olzmann, James A. .
NATURE, 2019, 575 (7784) :688-+
[6]   2,4-dienoyl-CoA reductase regulates lipid homeostasis in treatment-resistant prostate cancer [J].
Blomme, Arnaud ;
Ford, Catriona A. ;
Mui, Ernest ;
Patel, Rachana ;
Ntala, Chara ;
Jamieson, Lauren E. ;
Planque, Melanie ;
McGregor, Grace H. ;
Peixoto, Paul ;
Hervouet, Eric ;
Nixon, Colin ;
Salji, Mark ;
Gaughan, Luke ;
Markert, Elke ;
Repiscak, Peter ;
Sumpton, David ;
Blanco, Giovanny Rodriguez ;
Lilla, Sergio ;
Kamphorst, Jurre J. ;
Graham, Duncan ;
Faulds, Karen ;
MacKay, Gillian M. ;
Fendt, Sarah-Maria ;
Zanivan, Sara ;
Leung, Hing Y. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[7]   Prominin2 Drives Ferroptosis Resistance by Stimulating Iron Export [J].
Brown, Caitlin W. ;
Amante, John J. ;
Chhoy, Peter ;
Elaimy, Ameer L. ;
Liu, Haibo ;
Zhu, Lihua Julie ;
Baer, Christina E. ;
Dixon, Scott J. ;
Mercurio, Arthur M. .
DEVELOPMENTAL CELL, 2019, 51 (05) :575-+
[8]   The α6β4 integrin promotes resistance to ferroptosis [J].
Brown, Caitlin W. ;
Amante, John J. ;
Goel, Hira Lal ;
Mercurio, Arthur M. .
JOURNAL OF CELL BIOLOGY, 2017, 216 (12) :4287-4297
[9]   iPLA2β-mediated lipid detoxification controls p53-driven ferroptosis independent of GPX4 [J].
Chen, Delin ;
Chu, Bo ;
Yang, Xin ;
Liu, Zhaoqi ;
Jin, Ying ;
Kon, Ning ;
Rabadan, Raul ;
Jiang, Xuejun ;
Stockwell, Brent R. ;
Gu, Wei .
NATURE COMMUNICATIONS, 2021, 12 (01)
[10]   NRF2 Is a Major Target of ARF in p53-Independent Tumor Suppression [J].
Chen, Delin ;
Tavana, Omid ;
Chu, Bo ;
Erber, Luke ;
Chen, Yue ;
Baer, Richard ;
Gu, Wei .
MOLECULAR CELL, 2017, 68 (01) :224-+