Frequency-Reconfigurable Dual-Band Low-Noise Amplifier With Interstage Gm-Boosting for Millimeter-Wave 5G Communication

被引:11
作者
Lee, Seungchan [1 ]
Hong, Songcheol [2 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA USA
[2] Korea Adv Inst Sci & Technol, Dept Elect Engn, Daejeon, South Korea
来源
IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS | 2023年 / 33卷 / 04期
基金
新加坡国家研究基金会;
关键词
Dual band; Gain; 5G mobile communication; Inductors; Wireless communication; Millimeter wave technology; Transformers; 5G communication; CMOS; gm-boosting; millimeter-wave; multiband; reconfigurable; LNA; DESIGN; GAIN;
D O I
10.1109/LMWT.2022.3220975
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A differential low-noise amplifier (LNA) for the 5G n257 band and a frequency reconfigurable differential LNA for both the 5G n257 and n260 bands (26.5-29.5 and 37-40 GHz), fabricated in a 65-nm CMOS process, are presented. Both LNAs achieve better gain and noise figure performances due to the use of magnetically coupled gm-boosting in the common-gate stage of a cascode amplifier. Furthermore, the frequency-reconfigurable LNA uses frequency reconfigurable matching circuits at the input, interstage, and output to achieve optimal noise and gain matchings for each band. The single band LNA has a core chip area of 0.11 mm(2), a peak gain of 11.9 dB, a 3-dB bandwidth of 5.3 GHz, and a noise figure of 2.79 dB at 28.5 GHz. The dual-band LNA is capable of dual-band operation due to the reconfiguring matching circuits with switched coupled inductors (SCIs) and switched capacitors. It has a core chip area of 0.12 mm(2), peak gains of 11.1/8.5 dB, 3-dB bandwidths of 4.8/9.4 GHz, and minimum noise figures of 3.49/4.01 dB at 28.5/38 GHz, respectively.
引用
收藏
页码:463 / 466
页数:4
相关论文
共 27 条
[11]   A 79-GHz Adaptive-Gain and Low-Noise UWB Radar Receiver Front-End in 65-nm CMOS [J].
Jang, Jingyu ;
Oh, Juntaek ;
Kim, Choul-Young ;
Hong, Songcheol .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2016, 64 (03) :859-867
[12]   LC PLL With 1.2-Octave Locking Range Based on Mutual-Inductance Switching in 45-nm SOI CMOS [J].
Kossel, Marcel ;
Morf, Thomas ;
Weiss, Jonas ;
Buchmann, Peter ;
Menolfi, Christian ;
Toifl, Thomas ;
Schmatz, Martin L. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2009, 44 (02) :436-449
[13]   Design and measurements of a 28 GHz High-Linearity LNA in 45nm SOI-CMOS [J].
Lammert, Vincent ;
Sakalas, Paulius ;
Werthof, Andreas ;
Weigel, Robert ;
Issakov, Vadim .
2021 IEEE INTERNATIONAL CONFERENCE ON MICROWAVES, ANTENNAS, COMMUNICATIONS AND ELECTRONIC SYSTEMS (COMCAS), 2021, :275-279
[14]   Millimeter-Wave Multi-Band Reconfigurable Differential Power Divider for 5G Communication [J].
Lee, Seungchan ;
Park, Jinseok ;
Hong, Songcheol .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2022, 70 (01) :886-894
[15]   A Ka-Band Phase-Compensated Variable-Gain CMOS Low-Noise Amplifier [J].
Lee, Seungchan ;
Park, Jinseok ;
Hong, Songcheol .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2019, 29 (02) :131-133
[16]  
Li CJ, 2018, IEEE MTT S INT MICR, P1484
[17]   A compact 2.4/5.2-GHz CMOS dual-band low-noise amplifier [J].
Lu, LH ;
Hsieh, HH ;
Wang, YS .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2005, 15 (10) :685-687
[18]   Design of a Ka-Band Cascode Power Amplifier Linearized With Cold-FET Interstage Matching Network [J].
Park, Jinseok ;
Kang, Seunghoon ;
Hong, Songcheol .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2021, 69 (02) :1429-1438
[19]   Compact Wideband LNA With Gain and Input Matching Bandwidth Extensions by Transformer [J].
Qin, Pei ;
Xue, Quan .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2017, 27 (07) :657-659
[20]   A 5-GHz CMOS wireless LAN receiver front end [J].
Samavati, H ;
Rategh, HR ;
Lee, TH .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2000, 35 (05) :765-772