THE EFFICIENT ADI GALERKIN FINITE ELEMENT METHODS FOR THE THREE-DIMENSIONAL NONLOCAL EVOLUTION PROBLEM ARISING IN VISCOELASTIC MECHANICS

被引:7
|
作者
Qiu, Wenlin [1 ]
Xu, Da [1 ]
Yang, Xuehua [2 ]
Zhang, Haixiang [2 ]
机构
[1] Hunan Normal Univ, Sch Math & Stat, Changsha 410081, Hunan, Peoples R China
[2] Hunan Univ Technol, Sch Sci, Zhuzhou 412007, Hunan, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2023年 / 28卷 / 05期
基金
中国国家自然科学基金;
关键词
  Three-dimensional nonlocal evolution equation; ADI Galerkin meth-ods; convolution quadrature rules; stability and convergence; PARABOLIC INTEGRODIFFERENTIAL EQUATION; WEAKLY SINGULAR KERNEL; DIFFERENCE SCHEME; NUMERICAL-SOLUTION; TIME; DISCRETIZATION; ORDER;
D O I
10.3934/dcdsb.2022204
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we investigate and analyze new methods for the numerical solution of the three-dimensional nonlocal evolution problem aris-ing in viscoelastic mechanics. Then these methods combine Galerkin finite element methods (FEMs) for the spatial discretization with corresponding al-ternating direction implicit (ADI) algorithms, based on the backward Euler (BE) method and Crank-Nicolson (CN) method, respectively, from which, the Riemann-Liouville (R-L) integral term is approximated by relevant convolution quadrature rules. The L2-norm stability and convergence of two ADI Galerkin schemes are proved by the energy argument. Numerical results confirm the predicted space-time convergence orders.
引用
收藏
页码:3079 / 3106
页数:28
相关论文
共 50 条