Automatic identification of stone-handling behaviour in Japanese macaques using LabGym artificial intelligence

被引:3
作者
Ardoin, Theo [1 ,2 ]
Sueur, Cedric [3 ,4 ,5 ]
机构
[1] Univ Paris Saclay, Master Biodivers Ecol & Evolut, Orsay, France
[2] Univ Paris Saclay, Magistere Biol, Orsay, France
[3] Univ Strasbourg, IPHC UMR7178, CNRS, Strasbourg, France
[4] Univ Catholique Lille, ANTHROPO LAB, ETH EA 7446, Lille, France
[5] Inst Univ France, Paris, France
关键词
Artificial intelligence; Ethology; Primate behaviour; Deep learning; Japanese macaques; TRADITION; TRACKING;
D O I
10.1007/s10329-024-01123-x
中图分类号
Q95 [动物学];
学科分类号
071002 ;
摘要
The latest advances in artificial intelligence technology have opened doors to the video analysis of complex behaviours. In light of this, ethologists are actively exploring the potential of these innovations to streamline the time-intensive behavioural analysis process using video data. Several tools have been developed for this purpose in primatology in the past decade. Nonetheless, each tool grapples with technical constraints. To address these limitations, we have established a comprehensive protocol designed to harness the capabilities of a cutting-edge artificial intelligence-assisted software, LabGym. The primary objective of this study was to evaluate the suitability of LabGym for the analysis of primate behaviour, focusing on Japanese macaques as our model subjects. First, we developed a model that accurately detects Japanese macaques, allowing us to analyse their actions using LabGym. Our behavioural analysis model succeeded in recognising stone-handling-like behaviours on video. However, the absence of quantitative data within the specified time frame limits the ability of our study to draw definitive conclusions regarding the quality of the behavioural analysis. Nevertheless, to the best of our knowledge, this study represents the first instance of applying the LabGym tool specifically for the analysis of primate behaviours, with our model focusing on the automated recognition and categorisation of specific behaviours in Japanese macaques. It lays the groundwork for future research in this promising field to complexify our model using the latest version of LabGym and associated tools, such as multi-class detection and interactive behaviour analysis.
引用
收藏
页码:159 / 172
页数:14
相关论文
共 49 条
[1]   OBSERVATIONAL STUDY OF BEHAVIOR - SAMPLING METHODS [J].
ALTMANN, J .
BEHAVIOUR, 1974, 49 (3-4) :227-267
[2]   Toward a Science of Computational Ethology [J].
Anderson, David J. ;
Perona, Pietro .
NEURON, 2014, 84 (01) :18-31
[3]  
[Anonymous], LABGYM
[4]  
Barnard CJ, 2012, Animal behaviour: ecology and evolution
[5]  
Bharati Puja, 2020, Computational Intelligence in Pattern Recognition. Proceedings of CIPR 2019. Advances in Intelligent Systems and Computing (AISC 999), P657, DOI 10.1007/978-981-13-9042-5_56
[6]   DeepEthogram, a machine learning pipeline for supervised behavior classification from raw pixels [J].
Bohnslav, James P. ;
Wimalasena, Nivanthika K. ;
Clausing, Kelsey J. ;
Dai, Yu Y. ;
Yarmolinsky, David A. ;
Cruz, Tomas ;
Kashlan, Adam D. ;
Chiappe, M. Eugenia ;
Orefice, Lauren L. ;
Woolf, Clifford J. ;
Harvey, Christopher D. .
ELIFE, 2021, 10
[7]   Animal cultures matter for conservation [J].
Brakes, Philippa ;
Dall, Sasha R. X. ;
Aplin, Lucy M. ;
Bearhop, Stuart ;
Carroll, Emma L. ;
Ciucci, Paolo ;
Fishlock, Vicki ;
Ford, John K. B. ;
Garland, Ellen C. ;
Keith, Sally A. ;
McGregor, Peter K. ;
Mesnick, Sarah L. ;
Noad, Michael J. ;
di Sciara, Giuseppe Notarbartolo ;
Robbins, Martha M. ;
Simmonds, Mark P. ;
Spina, Fernando ;
Thornton, Alex ;
Wade, Paul R. ;
Whiting, Martin J. ;
Williams, James ;
Rendell, Luke ;
Whitehead, Hal ;
Whiten, Andrew ;
Rutz, Christian .
SCIENCE, 2019, 363 (6431) :1032-+
[8]   Seek and learn: Automated identification of microevents in animal behaviour using envelopes of acceleration data and machine learning [J].
Chakravarty, Pritish ;
Cozzi, Gabriele ;
Dejnabadi, Hooman ;
Leziart, Pierre-Alexandre ;
Manser, Marta ;
Ozgul, Arpat ;
Aminian, Kamiar .
METHODS IN ECOLOGY AND EVOLUTION, 2020, 11 (12) :1639-1651
[9]   Same father, same face: Deep learning reveals selection for signaling kinship in a wild primate [J].
Charpentier, M. J. E. ;
Harte, M. ;
Poirotte, C. ;
de Bellefon, J. Meric ;
Laubi, B. ;
Kappeler, P. M. ;
Renoult, J. P. .
SCIENCE ADVANCES, 2020, 6 (22)
[10]   Do Humans and Deep Convolutional Neural Networks Use Visual Information Similarly for the Categorization of Natural Scenes? [J].
De Cesarei, Andrea ;
Cavicchi, Shari ;
Cristadoro, Giampaolo ;
Lippi, Marco .
COGNITIVE SCIENCE, 2021, 45 (06)