Selective Transesterification to Control Copolymer Microstructure in the Ring-Opening Copolymerization of Lactide and ε-Caprolactone by Lanthanum Complexes

被引:6
|
作者
Beament, Bette [1 ]
Britton, Daniel [1 ]
Malcomson, Thomas [2 ,3 ]
Akien, Geoffrey R. [1 ]
Halcovitch, Nathan R. [1 ]
Coogan, Michael P. [1 ]
Platel, Rachel H. [1 ]
机构
[1] Univ Lancaster, Dept Chem, Lancaster LA1 4YB, England
[2] Univ Manchester, Dept Chem, Manchester M13 9PL, England
[3] Cardiff Univ, Sch Biosci, Museum Ave, Cardiff CF10 3AX, Wales
关键词
METAL-COMPLEXES; COORDINATION POLYMERIZATION; RACEMIC-LACTIDE; ALUMINUM COMPLEXES; STATISTICAL COPOLYMERIZATION; RAC-LACTIDE; BASIS-SETS; INITIATORS; CATALYSTS; LIGANDS;
D O I
10.1021/acs.inorgchem.3c03120
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
A series of novel lanthanum amido complexes, supported by ligands designed around the salan framework (salan = N,N '-bis(o-hydroxy, m-di-tert-butylbenzyl)-1,2-diaminoethane) were synthesized and fully characterized in the solid and solution states. The ligands incorporate benzyl or 2-pyridyl substituents at each tertiary amine center. The complexes were investigated as catalysts in the ring-opening homopolymerization of lactide (LA) and epsilon-caprolactone (epsilon-CL) and copolymerization of equimolar amounts of LA and epsilon-CL at ambient temperature. Solvent (THF or toluene) and the number of 2-pyridyl groups in the complex were found to influence the reactivity of the catalysts in copolymerization reactions. In all cases, complete conversion of LA to PLA was observed. The use of THF, a coordinating solvent, suppressed epsilon-CL polymerization, while the presence of one or more 2-pyridyl groups promoted epsilon-CL polymerization. Each copolymer gave a monomodal trace in gel permeation chromatography-size-exclusion chromatography (GPC-SEC) experiments, indicative of copolymer formation over homopolymerization. Copolymer microstructure was found to be dependent on catalyst structure and reaction solvent, ranging from blocky to close to alternating. Experiments revealed rapid conversion of LA in the initial stages of the reaction, followed by incorporation of epsilon-CL into the copolymer by either transesterification or propagation reactions. Significantly, the mode of transesterification (T-I or T-II) that occurs is determined by the structure of the metal complex and the reaction solvent, leading to the possibility of controlling copolymer microstructure through catalyst design.
引用
收藏
页码:280 / 293
页数:14
相关论文
empty
未找到相关数据