Global well-posedness of initial-boundary value problem of fifth-order KdV equation posed on finite interval

被引:0
作者
Zhao, Xiangqing [1 ]
Wang, Chengqiang [1 ]
Bao, Jifeng [2 ]
机构
[1] Suqian Univ, Dept Math, Suqian 223800, Jiangsu, Peoples R China
[2] Zhejiang Ocean Univ, Dept Math, Zhoushan 316022, Zhejiang, Peoples R China
关键词
fifth-order KdV equation; initial-boundary value problem; a priori estimate; global well-posedness; KAWAHARA EQUATION; SOBOLEV SPACES;
D O I
10.1515/math-2023-0158
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We have established the existence and uniqueness of the local solution for partial derivative(t)u + partial derivative(5)(x)u - u partial derivative(x)u = 0, 0 < x < 1, t > 0,u(x,0) = phi (x), 0 < x < 1,u(0,t) = h(1)(t), u(1,t) = h(2)(t), partial derivative(x)u(1,t) = h(3)(t), (0,1)partial derivative(x)u(0,t) = h(4)(t), partial derivative(2)(x)u(1,t) = h(s)(t) t > 0,in the study of Zhao and Zhang [Non-homogeneous boundary value problem of the fifth-order KdV equations posed on a bounded interval , J. Math. Anal. Appl. 470 (2019), 251-278]. A question arises naturally: Can the local solution be extended to a global one? This article will address this question. First, through a series of logical deductions, a global a priori estimate is established, and then the local solution is naturally extended to a global solution.
引用
收藏
页数:8
相关论文
共 14 条
[1]   A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain [J].
Bona, JL ;
Sun, SM ;
Zhang, BY .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (7-8) :1391-1436
[2]   GLOBAL WELL-POSEDNESS AND I METHOD FOR THE FIFTH ORDER KORTEWEG-DE VRIES EQUATION [J].
Chen, Wengu ;
Guo, Zihua .
JOURNAL D ANALYSE MATHEMATIQUE, 2011, 114 :121-156
[3]   Strichartz estimates for dispersive equations and solvability of the Kawahara equation [J].
Cui, SB ;
Tao, SP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 304 (02) :683-702
[4]  
Hasimoto H., 1970, KAGAKU, V40, P401
[5]   WEAK NON-LINEAR HYDROMAGNETIC WAVES IN A COLD COLLISION-FREE PLASMA [J].
KAKUTANI, T ;
ONO, H .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1969, 26 (05) :1305-&
[6]   GLOBAL WELL-POSEDNESS FOR THE KAWAHARA EQUATION WITH LOW REGULARITY [J].
Kato, Takamori .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (03) :1321-1339
[7]  
Korteweg D.J., 1895, Philosophical Magazine, V39, P422, DOI DOI 10.1080/14786449508620739
[8]  
Sriskandasingam S.-M., 2023, Nonlinear Anal., V227, DOI [10.1016/j.na.2022.113158.[13]X.Q., DOI 10.1016/J.NA.2022.113158.[13]X.Q]
[9]  
Tartar L., 1972, Journal of Functional Analysis, V9, P469, DOI 10.1016/0022-1236(72)90022-5
[10]   Global existence of solutions for the Kawahara equation in Sobolev spaces of negative indices [J].
Wang, Hua ;
Cui, Shang Bin ;
Deng, Dong Gao .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (08) :1435-1446