Crop Type Mapping Based on Polarization Information of Time Series Sentinel-1 Images Using Patch-Based Neural Network

被引:4
作者
Liu, Yuying [1 ]
Pu, Xuecong [1 ]
Shen, Zhangquan [1 ]
机构
[1] Zhejiang Univ, Coll Environm & Resource Sci, Hangzhou 310058, Peoples R China
关键词
crop type mapping; convolutional neural network; recurrent neural network; patch strategy; synthetic aperture radar; polarimetric decomposition; time series; PADDY RICE; CLASSIFICATION; MODEL;
D O I
10.3390/rs15133384
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Large-scale crop mapping is of fundamental importance to tackle food security problems. SAR remote sensing has lately received great attention for crop type mapping due to its stability in the revisit cycle and is not hindered by cloud cover. However, most SAR image-classification studies focused on the application of backscattering characteristics with machine learning models, while few investigated the potential of the polarization decomposition and deep-learning models. This study investigated whether the radar polarization information mined by polarization decomposition, the patch strategy and the approaches for combining recurrent and convolutional neural networks (Conv2d + LSTM and ConvLSTM2d) could effectively improve the accuracy of crop type mapping. Sentinel-1 SLC and GRD products in 2020 were collected as data sources to extract VH, VV, VH/VV, VV + VH, Entropy, Anisotropy, and Alpha 7-dimensional features for classification. The results showed that the three-dimensional Convolutional Neural Network (Conv3d) was the best classifier with an accuracy and kappa up to 88.9% and 0.875, respectively, and the ConvLSTM2d and Conv2d + LSTM achieved the second and third position. Compared to backscatter coefficients, the polarization decomposition features could provide additional phase information for classification in the time dimension. The optimal patch size was 17, and the patch-based Conv3d outperformed the pixel-based Conv1d by 11.3% in accuracy and 0.128 in kappa. This study demonstrated the value of applying polarization decomposition features to deep-learning models and provided a strong technical support to efficient large-scale crop mapping.
引用
收藏
页数:23
相关论文
共 47 条
[1]   Rapid Assessment of Flood Inundation and Damaged Rice Area in Red River Delta from Sentinel 1A Imagery [J].
Anh Phan ;
Ha, Duong N. ;
Man, Chuc D. ;
Nguyen, Thuy T. ;
Bui, Hung Q. ;
Nguyen, Thanh T. N. .
REMOTE SENSING, 2019, 11 (17)
[2]  
[Anonymous], 2013, DRYLAND CROP CLASSIF
[4]   The potential to reduce the risk of diffuse pollution from agriculture while improving economic performance at farm level [J].
Buckley, Cathal ;
Carney, Patricia .
ENVIRONMENTAL SCIENCE & POLICY, 2013, 25 :118-126
[5]  
Campbell J.B., 2011, Introduction to Remote Sensing
[6]   A Framework for Evaluating Land Use and Land Cover Classification Using Convolutional Neural Networks [J].
Carranza-Garcia, Manuel ;
Garcia-Gutierrez, Jorge ;
Riquelme, Jose C. .
REMOTE SENSING, 2019, 11 (03)
[7]   An entropy based classification scheme for land applications of polarimetric SAR [J].
Cloude, SR ;
Pottier, E .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1997, 35 (01) :68-78
[8]   A review of target decomposition theorems in radar polarimetry [J].
Cloude, SR ;
Pottier, E .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1996, 34 (02) :498-518
[9]   RECURRENT NEURAL NETWORKS AND ROBUST TIME-SERIES PREDICTION [J].
CONNOR, JT ;
MARTIN, RD ;
ATLAS, LE .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (02) :240-254
[10]  
Dietterich T G., 1998, Machine learning, V32, P1