GraphGPT: A Graph Enhanced Generative Pretrained Transformer for Conditioned Molecular Generation

被引:4
作者
Lu, Hao [1 ]
Wei, Zhiqiang [1 ]
Wang, Xuze [1 ]
Zhang, Kun [1 ]
Liu, Hao [1 ]
机构
[1] Ocean Univ China, Coll Comp Sci & Technol, Qingdao 266100, Peoples R China
关键词
molecular generation; generative pretrained transformer; graph neural networks; INFORMATION; DISCOVERY;
D O I
10.3390/ijms242316761
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Condition-based molecular generation can generate a large number of molecules with particular properties, expanding the virtual drug screening library, and accelerating the process of drug discovery. In this study, we combined a molecular graph structure and sequential representations using a generative pretrained transformer (GPT) architecture for generating molecules conditionally. The incorporation of graph structure information facilitated a better comprehension of molecular topological features, and the augmentation of a sequential contextual understanding of GPT architecture facilitated molecular generation. The experiments indicate that our model efficiently produces molecules with the desired properties, with valid and unique metrics that are close to 100%. Faced with the typical task of generating molecules based on a scaffold in drug discovery, our model is able to preserve scaffold information and generate molecules with low similarity and specified properties.
引用
收藏
页数:17
相关论文
共 54 条
[1]   Determination of solute lipophilicity, as log P(octanol) and log P(alkane) using poly(styrene-divinylbenzene) and immobilised artificial membrane stationary phases in reversed-phase high-performance liquid chromatography [J].
Abraham, MH ;
Chadha, HS ;
Leitao, ARE ;
Mitchell, RC ;
Lambert, WJ ;
Kaliszan, R ;
Nasal, A ;
Haber, P .
JOURNAL OF CHROMATOGRAPHY A, 1997, 766 (1-2) :35-47
[2]  
2023, Arxiv, DOI [arXiv:2303.08774, DOI 10.48550/ARXIV.2303.08774]
[3]   MolGPT: Molecular Generation Using a Transformer-Decoder Model [J].
Bagal, Viraj ;
Aggarwal, Rishal ;
Vinod, P. K. ;
Priyakumar, U. Deva .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (09) :2064-2076
[4]  
Bickerton GR, 2012, NAT CHEM, V4, P90, DOI [10.1038/NCHEM.1243, 10.1038/nchem.1243]
[5]   Generative models for molecular discovery: Recent advances and challenges [J].
Bilodeau, Camille ;
Jin, Wengong ;
Jaakkola, Tommi ;
Barzilay, Regina ;
Jensen, Klavs F. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2022, 12 (05)
[6]   GuacaMol: Benchmarking Models for de Novo Molecular Design [J].
Brown, Nathan ;
Fiscato, Marco ;
Segler, Marwin H. S. ;
Vaucher, Alain C. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (03) :1096-1108
[7]  
Brown TB, 2020, ADV NEUR IN, V33
[8]   Transfer Learning for Drug Discovery [J].
Cai, Chenjing ;
Wang, Shiwei ;
Xu, Youjun ;
Zhang, Weilin ;
Tang, Ke ;
Ouyang, Qi ;
Lai, Luhua ;
Pei, Jianfeng .
JOURNAL OF MEDICINAL CHEMISTRY, 2020, 63 (16) :8683-8694
[9]  
Chen Dexiong, 2022, P MACHINE LEARNING R
[10]   Recent Advances in Molecular Docking for the Research and Discovery of Potential Marine Drugs [J].
Chen, Guilin ;
Seukep, Armel Jackson ;
Guo, Mingquan .
MARINE DRUGS, 2020, 18 (11)