Discriminative kernel convolution network for multi-label ophthalmic disease detection on imbalanced fundus image dataset

被引:16
作者
Bhati, Amit [1 ]
Gour, Neha [1 ,2 ]
Khanna, Pritee [1 ]
Ojha, Aparajita [1 ]
机构
[1] PDPM Indian Inst Informat Technol, Dept Comp Sci & Engn, Design & Mfg, Jabalpur 482005, India
[2] Khalifa Univ, Dept Elect Engn & Comp Sci, Abu Dhabi, U Arab Emirates
关键词
Multi-label classification; Channel shuffle; Discriminative kernel convolution (DKCNet); Fundus image; ODIR-5K;
D O I
10.1016/j.compbiomed.2022.106519
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is feasible to recognize the presence and seriousness of eye disease by investigating the progressions in retinal biological structures. Fundus examination is a diagnostic procedure to examine the biological structure and anomalies present in the eye. Ophthalmic diseases like glaucoma, diabetic retinopathy, and cataracts are the main cause of visual impairment worldwide. Ocular Disease Intelligent Recognition (ODIR-5K) is a benchmark structured fundus image dataset utilized by researchers for multi-label multi-disease classification of fundus images. This work presents a Discriminative Kernel Convolution Network (DKCNet), which explores discriminative region-wise features without adding extra computational cost. DKCNet is composed of an attention block followed by a Squeeze-and-Excitation (SE) block. The attention block takes features from the backbone network and generates discriminative feature attention maps. The SE block takes the discriminative feature maps and improves channel interdependencies. Better performance of DKCNet is observed with InceptionResnet backbone network for multi-label classification of ODIR-5K fundus images with 96.08 AUC, 94.28 F1-score, and 0.81 kappa score. The proposed method splits the common target label for an eye pair based on the diagnostic keyword. Based on these labels, over-sampling and/or under-sampling are done to resolve the class imbalance. To check the bias of the proposed model towards training data, the model trained on the ODIR dataset is tested on three publicly available benchmark datasets. It is observed that the proposed DKCNet gives good performance on completely unseen fundus images also.
引用
收藏
页数:10
相关论文
共 39 条
  • [1] Abramoff Michael D, 2010, IEEE Rev Biomed Eng, V3, P169, DOI 10.1109/RBME.2010.2084567
  • [2] Factors associated with changes in retinal microcirculation after antihypertensive treatment
    Antonio, P-R
    Marta, P-S
    Luis, D. D. J.
    Antonio, D. P. J.
    Manuel, S. T.
    Rafael, M. S.
    Sonia, G. V.
    Manuel, G. P.
    Isabel, M-N
    Carlos, E. N. J.
    Gabriel, C-d-T
    Francisco, G-U I.
    [J]. JOURNAL OF HUMAN HYPERTENSION, 2014, 28 (05) : 310 - 315
  • [3] Sekou TB, 2019, Arxiv, DOI arXiv:1904.03892
  • [4] A systematic study of the class imbalance problem in convolutional neural networks
    Buda, Mateusz
    Maki, Atsuto
    Mazurowski, Maciej A.
    [J]. NEURAL NETWORKS, 2018, 106 : 249 - 259
  • [5] The Lancet Global Health Commission on Global Eye Health: vision beyond 2020
    Burton, Matthew J.
    Ramke, Jacqueline
    Marques, Ana Patricia
    Bourne, Rupert R. A.
    Congdon, Nathan
    Jones, Iain
    Tong, Brandon A. M. Ah
    Arunga, Simon
    Bachani, Damodar
    Bascaran, Covadonga
    Bastawrous, Andrew
    Blanchet, Karl
    Braithwaite, Tasanee
    Buchan, John C.
    Cairns, John
    Cama, Anasaini
    Chagunda, Margarida
    Chuluunkhuu, Chimgee
    Cooper, Andrew
    Crofts-Lawrence, Jessica
    Dean, William H.
    Denniston, Alastair K.
    Ehrlich, Joshua R.
    Emerson, Paul M.
    Evans, Jennifer R.
    Frick, Kevin D.
    Friedman, David S.
    Furtado, Joao M.
    Gichangi, Michael M.
    Gichuhi, Stephen
    Gilbert, Suzanne S.
    Gurung, Reeta
    Habtamu, Esmael
    Holland, Peter
    Jonas, Jost B.
    Keane, Pearse A.
    Keay, Lisa
    Khanna, Rohit C.
    Khaw, Peng Tee
    Kuper, Hannah
    Kyari, Fatima
    Lansingh, Van C.
    Mactaggart, Islay
    Mafwiri, Milka M.
    Mathenge, Wanjiku
    McCormick, Ian
    Morjaria, Priya
    Mowatt, Lizette
    Muirhead, Debbie
    Murthy, Gudlavalleti V. S.
    [J]. LANCET GLOBAL HEALTH, 2021, 9 (04): : E489 - E551
  • [6] Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
    Chen, Liang-Chieh
    Zhu, Yukun
    Papandreou, George
    Schroff, Florian
    Adam, Hartwig
    [J]. COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 833 - 851
  • [7] Disc-Aware Ensemble Network for Glaucoma Screening From Fundus Image
    Fu, Huazhu
    Cheng, Jun
    Xu, Yanwu
    Zhang, Changqing
    Wong, Damon Wing Kee
    Liu, Jiang
    Cao, Xiaochun
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) : 2493 - 2501
  • [8] Joint Optic Disc and Cup Segmentation Based on Multi-Label Deep Network and Polar Transformation
    Fu, Huazhu
    Cheng, Jun
    Xu, Yanwu
    Wong, Damon Wing Kee
    Liu, Jiang
    Cao, Xiaochun
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (07) : 1597 - 1605
  • [9] Howard AG, 2017, Arxiv, DOI [arXiv:1704.04861, DOI 10.48550/ARXIV.1704.04861]
  • [10] Exudate-based diabetic macular edema detection in fundus images using publicly available datasets
    Giancardo, Luca
    Meriaudeau, Fabrice
    Karnowski, Thomas P.
    Li, Yaqin
    Garg, Seema
    Tobin, Kenneth W., Jr.
    Chaum, Edward
    [J]. MEDICAL IMAGE ANALYSIS, 2012, 16 (01) : 216 - 226