ON GENERALIZED PROJECTIVE CURVATURE TENSOR OF PARA-KENMOTSU MANIFOLDS

被引:0
|
作者
Raghuwanshi, Teerathram [1 ]
Pandey, Giteshwari [2 ]
Pandey, Manoj Kumar [1 ]
Goyal, Anil [1 ]
机构
[1] Univ Inst Technol, Dept Math, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal 462033, Madhya Pradesh, India
[2] Govt Tulsi Coll, Dept Math, Anuppur 484224, Madhya Pradesh, India
关键词
Projective curvature tensor; para-Kenmotsu manifold; Einstein manifold; General-ized projective curvature tensor; PARACONTACT;
D O I
10.18514/MMN.2023.3736
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The object of the present paper is to generalize projective curvature tensor of para-Kenmotsu manifold with the help of a new generalized (0,2) symmetric tensor Z introduced by Mantica and Suh [8]. Various geometric properties of generalized projective curvature tensor of para-Kenmotsu manifold have been studied. It is shown that a generalized projectively phi- symmetric para-Kenmotsu manifold is an Einstein manifold.
引用
收藏
页码:383 / 394
页数:12
相关论文
共 50 条
  • [21] CHARACTERIZATION OF (6-SYMMETRIC LORENTZIAN PARA-KENMOTSU MANIFOLDS
    Prasad, Rajendra
    Verma, Abhinav
    Yadav, Vindhyachal Singh
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2023, 38 (03): : 635 - 647
  • [22] On the Conharmonic Curvature Tensor of Kenmotsu Manifolds
    Asghari, Nader
    Taleshian, Abolfazl
    THAI JOURNAL OF MATHEMATICS, 2014, 12 (03): : 525 - 536
  • [23] Para-Kenmotsu manifolds admitting semi-symmetric structures
    Sarkar, Nihar
    Baishya, Kanak Kanti
    Blaga, Adara M.
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2021, 13 (02) : 468 - 482
  • [24] Certain properties of η-Ricci soliton on η-Einstein para-Kenmotsu manifolds
    Almia, Priyanka
    Upreti, Jaya
    FILOMAT, 2023, 37 (28) : 9575 - 9585
  • [25] SOME RESULTS ON INVARINAT SUBMANIFOLDS OF LORENTZIAN PARA-KENMOTSU MANIFOLDS
    Atceken, Mehmet
    KOREAN JOURNAL OF MATHEMATICS, 2022, 30 (01): : 175 - 185
  • [26] Covariant Derivative of the Curvature Tensor of Kenmotsu Manifolds
    Pirhadi, Vahid
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (01) : 1 - 18
  • [27] Covariant Derivative of the Curvature Tensor of Kenmotsu Manifolds
    Vahid Pirhadi
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 1 - 18
  • [28] ON THE CONHARMONIC CURVATURE TENSOR OF KENMOTSU MANIFOLDS WITH GENERALIZED TANAKA-WEBSTER CONNECTION
    Prakasha, D. G.
    Hadimani, B. S.
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 491 - 503
  • [29] THREE-DIMENSIONAL LORENTZIAN PARA-KENMOTSU MANIFOLDS AND YAMABE SOLITONS
    Pankaj
    Chaubey, Sudhakar K.
    Prasad, Rajendra
    HONAM MATHEMATICAL JOURNAL, 2021, 43 (04): : 613 - 626
  • [30] CONFORMAL VECTOR FIELDS ON N(k)-PARACONTACT AND PARA-KENMOTSU MANIFOLDS
    Sardar, Arpan
    De, Uday Chand
    MISKOLC MATHEMATICAL NOTES, 2023, 24 (03) : 1515 - 1525