Depolarization of Li-rich Mn-based oxide via electrochemically active Prussian blue interface providing superior rate capability

被引:57
作者
Hao, Youchen [1 ,2 ]
Li, Xifei [1 ,2 ]
Liu, Wen [1 ,2 ]
Wang, Jingjing [1 ,2 ]
Shan, Hui [1 ,2 ]
Li, Wenbin [1 ,2 ]
Liu, Xingjiang [3 ]
Lin, Liangxu [4 ]
Wang, Xianyou [5 ]
Sun, Xueliang [6 ]
机构
[1] Xian Univ Technol, Inst Adv Electrochem Energy, Xian Key Lab New Energy Mat & Devices, Shaanxi Int Joint Res Ctr Surface Technol Energy, Xian 710048, Peoples R China
[2] Xian Univ Technol, Sch Mat Sci & Engn, Xian 710048, Peoples R China
[3] Tianjin Inst Power Sources, Sci & Technol Power Sources Lab, Tianjin 300384, Peoples R China
[4] Fujian Normal Univ, Strait Inst Flexible Elect SIFE, Future Technol, Fuzhou 350017, Fujian, Peoples R China
[5] Xiangtan Univ, Sch Chem, Key Lab Environ Friendly Chem & Applicat, Minist Educ, Xiangtan, Hunan, Peoples R China
[6] Univ Western Ontario, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada
基金
中国国家自然科学基金;
关键词
Li-rich Mn-based oxide; Prussian blue coating layer; synchronous redox; high-rate cyclability; METAL-ORGANIC FRAMEWORKS; CATHODE MATERIALS; RECENT PROGRESS; VOLTAGE DECAY;
D O I
10.1002/cey2.272
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The high-rate cyclability of Li-rich Mn-based oxide (LMO) is highly limited by the electrochemical polarization resulting from the slow kinetic of the Li2MnO3 phase. Herein, the Prussian blue (PB) coating layer with specific redox potential is introduced as a functionalized interface to overcome the side effect and the escaping of O on the surface of LMO, especially its poor rate capability. In detail, the PB layer can restrict the large polarization of LMO by sharing overloaded current at a high rate due to the synchronous redox of PB and LMO. Consequently, an enhanced high rate performance with capacity retention of 87.8% over 300 cycles is obtained, which is superior to 50.5% of the pristine electrode. Such strategies on the high-rate cyclability of Li-rich Mn-based oxide compatible with good low-rate performances may attract great attention for pursuing durable performances.
引用
收藏
页数:9
相关论文
共 32 条
[1]   Potential of Metal-Organic Frameworks for Separation of Xenon and Krypton [J].
Banerjee, Debasis ;
Cairns, Amy J. ;
Liu, Jian ;
Motkuri, Radha K. ;
Nune, Satish K. ;
Fernandez, Carlos A. ;
Krishna, Rajamani ;
Strachan, Denis M. ;
Thallapally, Praveen K. .
ACCOUNTS OF CHEMICAL RESEARCH, 2015, 48 (02) :211-219
[2]   Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-Rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries [J].
Chen, Cheng ;
Geng, Tianfeng ;
Du, Chunyu ;
Zuo, Pengjian ;
Cheng, Xinqun ;
Ma, Yulin ;
Yin, Geping .
JOURNAL OF POWER SOURCES, 2016, 331 :91-99
[3]   High-Temperature Atomic Mixing toward Well-Dispersed Bimetallic Electrocatalysts [J].
Chen, Fengjuan ;
Yao, Yonggang ;
Nie, Anmin ;
Xu, Shaomao ;
Dai, Jiaqi ;
Hitz, Emily ;
Li, Yiju ;
Lu, Aijiang ;
Huang, Zhennan ;
Li, Tangyuan ;
Shahbazian-Yassar, Reza ;
Hu, Liangbing .
ADVANCED ENERGY MATERIALS, 2018, 8 (25)
[4]   A Diffusion-Reaction Competition Mechanism to Tailor Lithium Deposition for Lithium-Metal Batteries [J].
Chen, Xiao-Ru ;
Yao, Yu-Xing ;
Yan, Chong ;
Zhang, Rui ;
Cheng, Xin-Bing ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (20) :7743-7747
[5]   Improving the electrochemical performance of Li-rich Li1.2Ni0.2Mn0.6O2 by using Ni-Mn oxide surface modification [J].
Ding, Xiang ;
Xiao, Li-Na ;
Li, Yi-Xuan ;
Tang, Zhong-Feng ;
Wan, Jia-Wei ;
Wen, Zhao-Yin ;
Chen, Chun-Hua .
JOURNAL OF POWER SOURCES, 2018, 390 :13-19
[6]   Selecting Substituent Elements for Li-Rich Mn-Based Cathode Materials by Density Functional Theory (DFT) Calculations [J].
Gao, Yurui ;
Wang, Xuefeng ;
Ma, Jun ;
Wang, Zhaoxiang ;
Chen, Liquan .
CHEMISTRY OF MATERIALS, 2015, 27 (09) :3456-3461
[7]   Covalent Assembly of Two-Dimensional COF-on-MXene Heterostructures Enables Fast Charging Lithium Hosts [J].
Guo, Dong ;
Ming, FangWang ;
Shinde, Digambar B. ;
Cao, Li ;
Huang, Gang ;
Li, Chunyang ;
Li, Zhen ;
Yuan, Youyou ;
Hedhili, Mohamed N. ;
Alshareef, Husam N. ;
Lai, Zhiping .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (25)
[8]   Optimized activation of Li2MnO3 effectively boosting rate capability of xLi2MnO3•(1-x)LiMO2 cathode [J].
Hao, Youchen ;
Liu, Wen ;
Zhang, Qianyu ;
Wang, Xianyou ;
Yang, Hong ;
Kou, Liang ;
Tian, Zhanyuan ;
Shao, Le ;
Sari, Hirbod Maleki Kheimeh ;
Wang, Jingjing ;
Shan, Hui ;
Li, Xifei .
NANO ENERGY, 2021, 88
[9]   Structural evolution of layered Li1.2Ni0.2Mn0.6O2 upon electrochemical cycling in a Li rechargeable battery [J].
Hong, Jihyun ;
Seo, Dong-Hwa ;
Kim, Sung-Wook ;
Gwon, Hyeokjo ;
Oh, Song-Taek ;
Kang, Kisuk .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (45) :10179-10186
[10]   Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release [J].
Hu, Enyuan ;
Yu, Xiqian ;
Lin, Ruoqian ;
Bi, Xuanxuan ;
Lu, Jun ;
Bak, Seongmin ;
Nam, Kyung-Wan ;
Xin, Huolin L. ;
Jaye, Cherno ;
Fischer, Daniel A. ;
Amine, Kahlil ;
Yang, Xiao-Qing .
NATURE ENERGY, 2018, 3 (08) :690-698