Some new exact solutions for a generalized variable coeffi- cients KdV equation

被引:2
作者
Rajagopalan, R. [1 ]
Kader, Abass H. Abdel [2 ]
Latif, Mohamed S. Abdel [2 ,3 ]
Baleanu, Dumitru [4 ,5 ]
El Sonbaty, Amr [1 ,2 ]
机构
[1] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Alkharj, Dept Math, Alkharj 11942, Saudi Arabia
[2] Mansoura Univ, Engn Fac, Dept Math & Engn Phys, Mansoura, Egypt
[3] New Mansoura Univ, Fac Sci, Dept Math, New Mansoura City, Egypt
[4] Cankaya Univ, Arts & Sci Fac, Math Dept, TR-06530 Ankara, Turkiye
[5] Inst Space Sci, POB MG-23, R-76900 Magurele, Romania
来源
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS | 2023年 / 29卷 / 01期
关键词
Exact solutions; generalized KdV equation; traveling wave; solitons;
D O I
10.22436/jmcs.029.01.01
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the variable coefficients KdV equation with general power nonlinearities is proposed. Firstly, it is transformed into a generalized KdV equation with constant coefficients using a point transformation. Then, the traveling wave transformation is utilized to transform the obtained constant coefficients generalized KdV equation into a generalized ordinary differential equation. We give a classification for the obtained generalized ordinary differential equation using a suitable integrating factor. Some new solutions are obtained for the generalized KdV equation with constant coefficients. All the obtained solutions in this paper for the variable coefficients KdV equation with general power nonlinearities are new.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 23 条
[1]  
Kader AHA, 2017, International Journal of Applied and Computational Mathematics, V3, P1163, DOI [10.1007/s40819-017-0408-3, 10.1007/s40819-017-0408-3, DOI 10.1007/S40819-017-0408-3]
[2]   Some exact solutions of a variable coefficients fractional biological population model [J].
Abdel Kader, Abass H. ;
Abdel Latif, Mohamed S. ;
Baleanu, Dumitru .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) :4701-4714
[3]   A Novel Homotopy Perturbation Method with Applications to Nonlinear Fractional Order KdV and Burger Equation with Exponential-Decay Kernel [J].
Ahmad, Shabir ;
Ullah, Aman ;
Akgul, Ali ;
De la Sen, Manuel .
JOURNAL OF FUNCTION SPACES, 2021, 2021
[4]   Improved (G′/G)-Expansion Method for the Space and Time Fractional Foam Drainage and KdV Equations [J].
Akgul, Ali ;
Kilicman, Adem ;
Inc, Mustafa .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[5]  
Arrigo D. J, 2015, SYMMETRY ANAL DIFFER, P1
[6]   On Soliton Solutions of Perturbed Boussinesq and KdV-Caudery-Dodd-Gibbon Equations [J].
Asjad, Muhammad Imran ;
Ur Rehman, Hamood ;
Ishfaq, Zunaira ;
Awrejcewicz, Jan ;
Akgul, Ali ;
Riaz, Muhammad Bilal .
COATINGS, 2021, 11 (11)
[7]  
Ekici M., 2014, J ADV MATH STUD, V1, P27
[8]   SYMMETRY ANALYSIS AND SOME NEW EXACT SOLUTIONS OF THE (2+1)-DIMENSIONAL BURGERS EQUATIONS [J].
El-Bialy, F. ;
Latif, M. S. Abdel ;
Elsaid, A. .
ACTA PHYSICA POLONICA B, 2017, 48 (11) :2031-2043
[9]   Invariant Investigation on the System of Hirota-Satsuma Coupled KdV Equation [J].
Hashemi, M. S. ;
Balmeh, Z. ;
Akgul, A. ;
Akgul, E. K. ;
Baleanu, D. .
INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
[10]   New exact solutions for the generalized variable-coefficient Gardner equation with forcing term [J].
Hong, Baojian ;
Lu, Dianchen .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (05) :2732-2738