A maximum temperature rise model of the shear band in bulk metallic glasses

被引:4
作者
Zhang, Hao [1 ]
Wang, Zhong [2 ]
Liaw, Peter K. [3 ]
Qiao, Junwei [1 ,4 ]
Wu, Yucheng [4 ,5 ]
机构
[1] Taiyuan Univ Technol, Coll Mat Sci & Engn, Taiyuan 030024, Peoples R China
[2] Taiyuan Univ Technol, Coll Mech & Vehicle Engn, Taiyuan 030024, Peoples R China
[3] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[4] Taiyuan Univ Technol, Key Lab Interface Sci & Engn Adv Mat, Minist Educ, Taiyuan 030024, Peoples R China
[5] Hefei Univ Technol, Natl Local Joint Engn Res Ctr Nonferrous Met & Pro, Hefei 230009, Peoples R China
基金
美国国家科学基金会;
关键词
Bulk metallic glasses; A maximum temperature rise model; A critical temperature; INHOMOGENEOUS FLOW; PLASTIC-FLOW; BEHAVIOR; FRACTURE; DEFORMATION;
D O I
10.1016/j.jnoncrysol.2023.122806
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Based on mechanisms applicable to bulk metallic glasses (BMGs), such as a superposition principle of an instantaneous finite surface heat source temperature field and a flow model about the shear-band velocity, a maximum temperature rise model of shear bands in BMGs was deduced, Delta T-max=sigma(y)/c(p)root Delta u(pl)center dot v(SB)/2 pi alpha. The model de-scribes the dependence of the maximum temperature rise on the yield strength and the shear-band velocity in BMGs. It can be calculated that the maximum temperature rise of BMGs is between 1 K similar to 30 K at room tem-perature through these two parameters. A critical temperature, TC, of almost 0.8 similar to 0.9T(g) is introduced, at T<TC, the change of the yield strength with temperature in BMGs basically conforms a cooperative shear model (CSM), and at T>TC, a significant reduction of the yield strength in BMGs can be attributed to avoiding failure due to localized material softening.
引用
收藏
页数:5
相关论文
共 36 条
[1]   Bulk Metallic Glasses Deform via Slip Avalanches [J].
Antonaglia, James ;
Wright, Wendelin J. ;
Gu, Xiaojun ;
Byer, Rachel R. ;
Hufnagel, Todd C. ;
LeBlanc, Michael ;
Uhl, Jonathan T. ;
Dahmen, Karin A. .
PHYSICAL REVIEW LETTERS, 2014, 112 (15)
[2]  
Carslaw H.S., 1959, CONDUCTION HEAT SOLI
[3]   FORMATION, STABILITY AND STRUCTURE OF PALLADIUM-SILICON BASED ALLOY GLASSES [J].
CHEN, HS ;
TURNBULL, D .
ACTA METALLURGICA, 1969, 17 (08) :1021-&
[4]   Cold versus hot shear banding in bulk metallic glass [J].
Cheng, Y. Q. ;
Han, Z. ;
Li, Y. ;
Ma, E. .
PHYSICAL REVIEW B, 2009, 80 (13)
[5]   FLOW AND FRACTURE OF A NI-FE METALLIC-GLASS [J].
DAVIS, LA ;
YEOW, YT .
JOURNAL OF MATERIALS SCIENCE, 1980, 15 (01) :230-236
[6]   Constitutive model for inhomogeneous flow in bulk metallic glasses [J].
Dubach, Alban ;
Dalla Torre, Florian H. ;
Loeffler, Joerg F. .
ACTA MATERIALIA, 2009, 57 (03) :881-892
[7]   Shear band melting and serrated flow in metallic glasses [J].
Georgarakis, K. ;
Aljerf, M. ;
Li, Y. ;
LeMoulec, A. ;
Charlot, F. ;
Yavari, A. R. ;
Chornokhvostenko, K. ;
Tabachnikova, E. ;
Evangelakis, G. A. ;
Miracle, D. B. ;
Greer, A. L. ;
Zhang, T. .
APPLIED PHYSICS LETTERS, 2008, 93 (03)
[8]   Spatiotemporally inhomogeneous plastic flow of a bulk-metallic glass [J].
Jiang, W. H. ;
Fan, G. J. ;
Liu, F. X. ;
Wang, G. Y. ;
Choo, H. ;
Liaw, P. K. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2008, 24 (01) :1-16
[9]   A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence -: art. no. 195501 [J].
Johnson, WL ;
Samwer, K .
PHYSICAL REVIEW LETTERS, 2005, 95 (19)
[10]   Shear banding behavior and fracture mechanisms of Zr55Al10Ni5Cu30 bulk metallic glass in uniaxial compression analyzed using a digital image correlation method [J].
Joo, Soo-Hyun ;
Kato, Hidemi ;
Gangwar, Kapil ;
Lee, Sunghak ;
Kim, Hyoung Seop .
INTERMETALLICS, 2013, 32 :21-29