Enhanced ionic conductivity of sulfide solid electrolyte with high lithium content based on cryomilling

被引:3
作者
Jia, Zhenggang [1 ]
Zhang, Xuexi [1 ]
Qian, Mingfang [1 ]
Jin, Yingmin [2 ]
Xiong, Yueping [2 ]
机构
[1] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Sch Chem & Chem Engn, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Sulfide solid electrolyte; Solid-state battery; Cryomilling; ELECTROCHEMICAL PERFORMANCE; CRYSTAL-STRUCTURE; STATE LITHIUM;
D O I
10.1016/j.elecom.2023.107438
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Considering the high ion conductivity and good machining properties of lithium thiophosphate (LPS), it has attracted increasing attention as a solid electrolyte for all-solid-state batteries. Chemical and thermal stability can be significantly enhanced by increasing lithium content. However, in past reports, the lithium content of LPS is commonly less than 40 %. LPS with high lithium content (Li > 40 at%) shows low ion conductivity and high grain boundary resistance. In the present work, LPS with 47.2 at% lithium was prepared by cryomilling and solid-state reaction, avoiding crystallization and adhesion in the ball milling process. By improving the ball milling process, the ion conductivity (1.36 mS/cm) and ion activation energy (10.80 kJ/mol) were optimized by 106.1 % and 41.5 %, respectively. The resulting all-solid-state battery showed a high capacity retention of 104 % after 100 cycles.
引用
收藏
页数:4
相关论文
共 23 条
[1]   Lithium ion conductivity in Li2S-P2S5 glasses - building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7 [J].
Dietrich, Christian ;
Weber, Dominik A. ;
Sedlmaier, Stefan J. ;
Indris, Sylvio ;
Culver, Sean P. ;
Walter, Dirk ;
Janek, Juergen ;
Zeier, Wolfgang G. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (34) :18111-18119
[2]   Synthesis, Structural Characterization, and Lithium Ion Conductivity of the Lithium Thiophosphate Li2P2S6 [J].
Dietrich, Christian ;
Weber, Dominik A. ;
Culver, Sean ;
Senyshyn, Anatoliy ;
Sedlmaier, Stefan J. ;
Indris, Sylvio ;
Janek, Juergen ;
Zeier, Wolfgang G. .
INORGANIC CHEMISTRY, 2017, 56 (11) :6681-6687
[3]   Stress Regulation on Atomic Bonding and Ionic Diffusivity: Mechanochemical Effects in Sulfide Solid Electrolytes [J].
Fu, Zhong-Heng ;
Chen, Xiang ;
Zhao, Chen-Zi ;
Yuan, Hong ;
Zhang, Rui ;
Shen, Xin ;
Ma, Xia-Xia ;
Lu, Yang ;
Liu, Quan-Bing ;
Fan, Li-Zhen ;
Zhang, Qiang .
ENERGY & FUELS, 2021, 35 (12) :10210-10218
[4]   A Review on the Wet Chemical Synthesis of Sulfide Solid Electrolytes for All-Solid-State Li Batteries [J].
Ha, Yoon-Cheol .
JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY, 2022, 25 (03) :95-104
[5]   Formation of superionic crystals from mechanically milled Li2S-P2S5 glasses [J].
Hayashi, A ;
Hama, S ;
Minami, T ;
Tatsumisago, M .
ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (02) :111-114
[6]   Crystal structure and phase transitions of the lithium ionic conductor Li3PS4 [J].
Homma, Kenji ;
Yonemura, Masao ;
Kobayashi, Takeshi ;
Nagao, Miki ;
Hirayama, Masaaki ;
Kanno, Ryoji .
SOLID STATE IONICS, 2011, 182 (01) :53-58
[7]   Structural and electrolyte properties of Li4P2S6 [J].
Hood, Zachary D. ;
Kates, Cameron ;
Kirkham, Melanie ;
Adhikari, Shiba ;
Liang, Chengdu ;
Holzwarth, N. A. W. .
SOLID STATE IONICS, 2016, 284 :61-70
[8]   Synthesis and electrochemical performance of (100? x )Li 7 P 3 S 11-x Li 2 OHBr composite solid electrolyte for all -solid-state lithium batteries [J].
Jung, Su-Yeon ;
Rajagopal, Rajesh ;
Ryu, Kwang-Sun .
JOURNAL OF ENERGY CHEMISTRY, 2020, 47 :307-316
[9]  
Kamaya N, 2011, NAT MATER, V10, P682, DOI [10.1038/NMAT3066, 10.1038/nmat3066]
[10]   High-power all-solid-state batteries using sulfide superionic conductors [J].
Kato, Yuki ;
Hori, Satoshi ;
Saito, Toshiya ;
Suzuki, Kota ;
Hirayama, Masaaki ;
Mitsui, Akio ;
Yonemura, Masao ;
Iba, Hideki ;
Kanno, Ryoji .
NATURE ENERGY, 2016, 1